
EasyPAP: a Framework for
Learning Parallel Programming

Alice Lasserre, Raymond Namyst, Pierre-André Wacrenier
firstname.lastname@u-bordeaux.fr

Dept. of Computer Science

https://gforgeron.gitlab.io/easypap/

A case for a comprehensive framework

• Parallel programming is not trivial
• Debugging is entering a world of pain
• Understanding (bad) performance is even more challenging

• Like many teachers, we progressively added visualization facilities to our
lab applications
• Increased student’s motivation
• Greatly helped to improve correctness

• EasyPAP goes further
• Minimize time spent to become familiar with new problems
• Enable quick OpenMP/MPI/OpenCL prototyping
• Provide simple tools to analyze parallel behavior

EasyPAP: focus on parallelism!

• C library + utilities
• Support for Pthreads, OpenMP,

MPI, OpenCL

• Online rendering of 2D
computations
• Work distribution monitoring

• Trace visualization
• Side-by-side comparison

• Plotting facilities
• Thorough experiments & analysis

Online visualization and thread monitoring

Offline trace visualization and plotting facilities

Game of Life - OpenMP

1 2 4 8 16 32 64
schedule(dynamic,n) 32

64

128

Tile
Size

0
200
400
600
800
1000
1200

Ti
m
e
(µ
s)

min=103.048

Kernels and variants

• Students are provided with sequential
implementations of various kernels
• Mandelbrot Set, Game of Life, Abelian

Sandpiles, Picture Blur
ü Just add a C file to create a new kernel,

then compile & run

• They can design and experiment with
as many variants as they can think of
• Kernels and variants are selected on

command line
ü Just add a function to create a new

variant, then compile & run

///////////////////////////// Simple sequential version (seq)
// Suggested cmdline:
// easypap --kernel mandelset --variant seq
//
unsigned mandelset_compute_seq (unsigned nb_iter)
{
for (unsigned it = 1; it <= nb_iter; it++) {
for (int y = 0; y < DIM; y++)
for (int x = 0; x < DIM; x++)
cur_img (y, x) = compute_one_pixel (y, x);

zoom ();
}
return 0;

}

unsigned mandelset_compute_omp (unsigned nb_iter) { }

unsigned mandelset_compute_omp_tiled (unsigned nb_iter) { }

unsigned mandelset_compute_mpi (unsigned nb_iter) { }

Code instrumentation and monitoring
// Tile inner computation

static inline void do_tile (int x, int y, int width, int height, int thread)

{

monitoring_start_tile (thread);

for (int i = y; i < y + height; i++)

for (int j = x; j < x + width; j++)

cur_img (i, j) = compute_one_pixel (i, j);

monitoring_end_tile (x, y, width, height, thread);

}

//////////////// Tiled OpenMP version (omp_tiled)

// Suggested cmdline: easypap -k mandelset -v omp_tiled -ts 32 -m

unsigned mandelset_compute_omp_tiled (unsigned nb_iter)

{

for (unsigned it = 1; it <= nb_iter; it++) {

#pragma omp parallel for collapse(2) schedule(runtime)

for (int y = 0; y < DIM; y += TILE_SIZE)

for (int x = 0; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE, omp_get_thread_num ());

zoom ();

}

return 0;

}

main window tiling window

activity monitor

Off-line Trace Visualization
Task scheduling chart Task-data mapping

Trace comparison
“diff” mode: iterations are re-aligned

Plotting facilities

• Experiments can easily be
automated using scripts
• No need to recompile
• Each run records all experimental

details in a CSV file

• Plotting (python) scripts
• Ease graph selection
• Make sure results are sound

• Speedups automatically computed
• Parameter consistency check

What are the main benefits?

• Focus on parallelism
• Implement many variants
• Experiments with multiple parameters

• Quicker and deeper understanding of
• Scheduling

• Load balancing, data affinity
• Cache

• Tiling, false sharing
• Synchronization

• Race conditions, barriers, task dependencies
• Hardware specific optimizations

• Code specialization, vectorization

CPU coverage map across multiple iterations
revealing task-data affinity

EasyPAP documentation
and download:

http://gforgeron.gitlab.io/easypap/

http://gforgeron.gitlab.io/easypap/

