
Multicore & GPU Programming:
OpenMP tasks

Raymond Namyst, Pierre-André Wacrenier
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/it224/

1

https://gforgeron.gitlab.io/it224/

Motivation for introducing tasks in OpenMP

• Limits of “all you need is… loops”
• Loop have long been considered the main way of sharing work between

threads
• Threads were first-class citizens

• Not all programs exhibit parallelism in the form of loop iterations
• Graphs, trees, etc.

• Composition of parallel codes (nested parallelism) leads to poor performance

• Tasking is a concept already present in several runtime
systems/libraries
• Cilk [MIT]
• Intel TBB

2

Tasking

• Tasks are code chunks which are
implicitly placed in a “pool of
task” to be executed in parallel
• Task are generated using the
#pragma omp task directive

• Task execution is potentially
postponed until it get picked by a
thread
• Task scheduling is performed by a

dynamic runtime system

{

{
printf ("Start\n");

printf ("Middle (executed by %d)\n",
omp_get_thread_num ());

printf ("End\n");
}

}

3

Tasking

• Tasks are code chunks which are
implicitly placed in a “pool of
task” to be executed in parallel
• Task are generated using the
#pragma omp task directive

• Task execution is potentially
postponed until it get picked by a
thread
• Task scheduling is performed by a

dynamic runtime system

{
#pragma omp parallel
{
printf ("Start\n");

#pragma omp task

printf ("Middle (executed by %d)\n",
omp_get_thread_num ());

printf ("End\n");
}

}

4

Tasking

• In this example
• Each thread generates one task
• Tasks can be executed by any

thread

• All tasks must complete before
the next synchronization point
• Barrier
• End of parallel region

{
#pragma omp parallel
{
printf ("Start\n");

#pragma omp task

printf ("Middle (executed by %d)\n",
omp_get_thread_num ());

printf ("End\n");
}

}

5

See first-task.c and second-task.c

Tasking

• In the general case, we don’t
want all these tasks duplicates
• Only one thread generates tasks

• #pragma omp single
• Only one thread executes the code,

i.e. generates tasks
• The others wait on an implicit

barrier
• See single.c

• All threads cooperate to empty
the pool of ready-tasks

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

printf ("Task 1 executed by Thread %d\n", omp_get_thread_num ());

sleep (1);

printf ("End of Task 1\n");

}

#pragma omp task

{

printf ("Task 2 executed by Thread %d\n", omp_get_thread_num ());

sleep (1);

printf ("End of Task 2\n");

}

}

6

See task.c

Tasking

• Warning
• The following code behaves quite

differently!

#pragma omp parallel

{

#pragma omp single

#pragma omp task

{

printf ("Task 1 executed by Thread %d\n", omp_get_thread_num ());

sleep (1);

printf ("End of Task 1\n");

}

#pragma omp single

#pragma omp task

{

printf ("Task 2 executed by Thread %d\n", omp_get_thread_num ());

sleep (1);

printf ("End of Task 2\n");

}

}

7

See task.c

Tasking

• Warning
• The following code behaves quite

differently!

• Adding nowait allows task
creations to take place in parallel

#pragma omp parallel

{

#pragma omp single nowait

#pragma omp task

{

printf ("Task 1 executed by Thread %d\n", omp_get_thread_num ());

sleep (1);

printf ("End of Task 1\n");

}

#pragma omp single

#pragma omp task

{

printf ("Task 2 executed by Thread %d\n", omp_get_thread_num ());

sleep (1);

printf ("End of Task 2\n");

}

}

8

See task.c

Tasking

• Now we can generate
parallelism from within while
loops

#pragma omp parallel
#pragma omp single
{

int k = 0;

while (k < 25) {

#pragma omp task firstprivate (k)
test_prime (k);

k++;
}

}

9

See primes.c

Tasking

• More generally, we can handle
an arbitrary number of elements
• Not known a priori

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

10

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

11

Implicit task

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

12

Implicit task

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

13

Implicit task

« treat » tasks

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

14

Implicit task

« treat » tasks

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

15

Implicit task

« treat » tasks

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

16

Implicit task

« treat » tasks?

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

17

Implicit task

« treat » tasks

Either…

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

18

Implicit task

« treat » tasks

Either…

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

19

Implicit task

« treat » tasks

Either…

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

20

Implicit task

« treat » tasks

…or

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

21

Implicit task

« treat » tasks

And we’re potentialy stuck for a long time!

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

22

Implicit task

« treat » tasks

Because only the yellow thread can execute the implicit task

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;

 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

23

Implicit task

« treat » tasks

Because only the yellow thread can execute the implicit task

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;
#pragma omp task untied
 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

24

Implicit task

« treat » tasks

Tasking

• Caution!
• Tasks are “tied” by default

• Tasks are tied to the 1st thread that
start their execution
• Codes using omp_get_thread_num

are guaranteed to stick to the same
thread

• When a tied task is interrupted, no
other thread can continue its
execution…

#pragma omp parallel
#pragma omp single
{

 element_t elt;
#pragma omp task untied
 while (elt = get_next ())

#pragma omp task firstprivate (elt)
 treat (elt);
}

25

Implicit task

« treat » tasks

Recursive parallelism

• Fibonacci
• Computing the nth Fibonacci

number the recursive way

int fib_seq (int n)
{
 if (n < 2)

 return n;

 int r1, r2;

 r1 = fib_seq (n - 1);

 r2 = fib_seq (n - 2);

 return r1 + r2;
}

26

See fib.c

Recursive parallelism

• Fibonacci
• Computing the nth Fibonacci

number the recursive worst way

int fib_seq (int n)
{
 if (n < 2)

 return n;

 int r1, r2;

 r1 = fib_seq (n - 1);

 r2 = fib_seq (n - 2);

 return r1 + r2;
}

27

See fib.c

Recursive parallelism

• Fibonacci
• Computing the nth Fibonacci

number the recursive worst

#pragma omp parallel shared(r)
#pragma omp single
 r = fib_par (n);

int fib_par (int n)
{
 if (n < 2)

 return n;

 int r1, r2;
#pragma omp task shared (r1)
 r1 = fib_par (n - 1);

#pragma omp task shared (r2)
 r2 = fib_par (n - 2);

 return r1 + r2;
}

28

See fib.c

Recursive parallelism

• Fibonacci
• Computing the nth Fibonacci

number the recursive way

#pragma omp parallel shared(r)
#pragma omp single
 r = fib_par (n);

int fib_par (int n)
{
 if (n < 2)

 return n;

 int r1, r2;
#pragma omp task shared (r1)
 r1 = fib_par (n - 1);

#pragma omp task shared (r2)
 r2 = fib_par (n - 2);

 return r1 + r2;
}

29

See fib.c

Bug!

Recursive parallelism

• The taskwait directive
• Waits completion of child tasks

• Ignore childs of childs…
• In the case of Fibonacci, taskwait is

performed at each level, so it does
not matter

int fib_par (int n)
{
 if (n < 2)

 return n;

 int r1, r2;
#pragma omp task shared (r1)
 r1 = fib_par (n - 1);

#pragma omp task shared (r2)
 r2 = fib_par (n - 2);
#pragma omp taskwait

 return r1 + r2;
}

30

See fib.c

Recursive parallelism

• The taskwait directive
• Waits completion of child tasks

• Ignore childs of childs…
• In the case of Fibonacci, taskwait is

performed at each level, so it does
not matter

• Note: for big values of n, the
function creates a lot of tasks!

int fib_par (int n)
{
 if (n < 2)

 return n;

 int r1, r2;
#pragma omp task shared (r1)
 r1 = fib_par (n - 1);

#pragma omp task shared (r2)
 r2 = fib_par (n - 2);
#pragma omp taskwait

 return r1 + r2;
}

31

See fib.c

Recursive parallelism

• The taskwait directive
• Waits completion of child tasks

• Ignore childs of childs…
• In the case of Fibonacci, taskwait is

performed at each level, so it does
not matter

• Note: for big values of n, the
function creates a lot of tasks!
• Conditional task creation

int fib_par (int n)
{
 if (n < 2)

 return n;

 int r1, r2;
#pragma omp task shared (r1) if (n > 11)
 r1 = fib_par (n - 1);

#pragma omp task shared (r2) if (n > 12)
 r2 = fib_par (n - 2);
#pragma omp taskwait

 return r1 + r2;
}

32

See fib.c

taskwait vs taskgroup

 #pragma omp task

 {

 #pragma omp task

 f ();

 #pragma omp task

 g ();

 }

 #pragma omp task

 h ();

 #pragma omp taskwait

// Only h () is guaranteed to be completed

33

taskwait vs taskgroup

 #pragma omp task

 {

 #pragma omp task

 f ();

 #pragma omp task

 g ();

 }

 #pragma omp task

 h ();

 #pragma omp taskwait

// Only h () is guaranteed to be completed

#pragma omp taskgroup

{

 #pragma omp task

 {

 #pragma omp task

 f ();

 #pragma omp task

 g ();

 }

 #pragma omp task

 h ();

}

// f(), g() and h () are guaranteed to be

// completed

34

Task dependencies

• In some situations, we need a
tighter control on
synchronizations

• Say we want to taskify the
following code
• Where to insert taskwait

directives?

{

int a, b, c, d, e;

{

a = fa ();

b = fb ();

c = fc ();

d = fadd (a, b);

e = fmul (c, d);

}

printf ("result = %d\n", e);

}

35

See flow.c

a b c

d

e

Task dependencies

• In some situations, we need a
tighter control on
synchronizations

• Say we want to taskify the
following code
• Where to insert taskwait

directives?

{

int a, b, c, d, e;

{

a = fa ();

b = fb ();

c = fc ();

d = fadd (a, b);

e = fmul (c, d);

}

printf ("result = %d\n", e);

}

36

See flow.c

a b c

d

e

Task dependencies

• In some situations, we need a
tighter control on
synchronizations

• Say we want to taskify the
following code
• Where to insert taskwait

directives?

{

int a, b, c, d, e;

{

a = fa ();

b = fb ();

c = fc ();

d = fadd (a, b);

e = fmul (c, d);

}

printf ("result = %d\n", e);

}

37

See flow.c

a b

cd

e

Task dependencies

• Implicit task dependencies can be
inferred by OpenMP
• By specifying in/out/inout accesses to

“variables”

• depend clause
• depend (out: v)

• The task modifies v
• depend (in: v)

• The task reads v
• depend (mutexinoutset: v)

• Only one task accessing v can run at a
time, but no specific order is required

#pragma omp task shared (a) depend (out: a)

a = fa ();

#pragma omp task shared (b) depend (out: b)

b = fb ();

#pragma omp task shared (d) depend (out: d) depend (in: a, b)

d = fadd (a, b);

38

See flow-depend.c

a b

d

Task dependencies

• Dependencies only apply to tasks which have the same parent task

• Depend clauses only use the address of variables internally
• OpenMP uses addresses as keys to match in/out/inout clauses
• Variables are not accessed

• OpenMP drops depend(in: v) if no depend(out: v) was previously
encountered…

39

More to come about OpenMP

• Support for hierarchical memory
• Non-Uniform Memory Access architectures (NUMA)

• Support for accelerators
• Offloading

• Support for SIMD processors

• Dependencies between loop indexes
• Ordered clause

40

Additional resources
available on

http://gforgeron.gitlab.io/it224/

41

http://gforgeron.gitlab.io/se/

