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Background:
From early video coprocessors

to current GPUs
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A brief history of GPUs

• Please read the nice exhaustive 
history at TechSpot:
- https://www.techspot.com/article/65

0-history-of-the-gpu/

• First Graphic Coprocessors were 
obviously 2D
- 1976: RCA “Pixie” video chip 

(CDP1861), 64x128 pixels
- 1977: Television Interface Adapter 

(TIA) 1A
• Integrated into Atari 2600
• RAMless: no framebuffer!
• 320x240 pixels

- 1981: Motorola MC6845 (IBM PC, 
Apple II)
• Character-based display

https://www.techspot.com/article/650-history-of-the-gpu/
https://www.techspot.com/article/650-history-of-the-gpu/
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Space Invaders on Atari 2600
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A brief history of GPUs

• 1983: Intel iSBX 275 Video Graphics 
Controller Multimode Board
- 256x256, 8 colors
- 512x512 monochromic
- Lines, rectangles, circles…
- Hardware zooming & scrolling
- 32KB, $1000 J

• Professional flight simulators

• 1987: ATI EGA Wonder
- 640x350, 16 colors
- 256KB of DRAM
- $399
- EGA Wonder 800

• 800x600 VGA
• $449



Background

- 6

A brief history of GPUs

• 1992, OpenGL 1.0 released by SGI
- multi-platform API for both 2D and 

3D graphics
- Initially aimed at Unix

• Quickly adopted for 3D gaming

• 1992: Wolfenstein 3D (Id Software)
- First “First-Person Shooter”

https://classicreload.com/wolfenstein-3d.html

• 1993: Birth of Nvidia

• 1995: Microsoft promotes its Direct3D 
API
- But also supports OpenGL

https://classicreload.com/wolfenstein-3d.html
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A brief history of GPUs

• 1995
- 3dfx interactive releases the Glide 

API
• Subset of OpenGL 1.1
• Geometry and texture mapping

- Nvidia NV1
• First chip integrating

3D rendering
video acceleration
GUI acceleration

• No native support of D3D 
triangular polygons
(DirectX 1.0)

- ATI 3D Rage
SEGA Virtua Fighter Remix for Diamond Edge3D (NV1)



Background

- 8

A brief history of GPUs

• 1996: 3dfx Voodoo Graphics
- 3D only, Glide API
- Killer app: Quake (ID software)
- Beginning of a clear domination!

• 1997
- ATI Rage Pro

• AGP 2x interface (Intel)
• 533MB/s (against 132MB/s using PCI)
• NB: later, cards will embed fast GDDR 

memory
- Nvidia Riva 128

• Quake 2, Quake 3…

• 1998
- 3dfx Voodoo 2

• 800x600
• New landmark in framerates for many 

games
• Scan Line Interleave (SLI)

Aggregate multiple cards via a ribbon cable
- Intel i740 (worth mentionning J)
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A brief history of GPUs
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A brief history of GPUs

• 1998
- Sega choses PowerVR (instead 

of 3dfx) for its Dreamcast 
console…

- Microsoft Direct3D gains 
popularity

- 3dfx decides to manufacture 
and sell their boards
• Not competitive against ATI 

and Nvidia…

• 1999
- Nvidia GeForce 256
- First “Graphics Processing Unit”

• Transformation and Lighting 
hardware engine
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GPU Accelerators

• 2001
- Nvidia GeForce 3 (NV20)

• Programmable units
“shaders”

• GPUs become General Purpose 
Accelerators (GPGPUs)
- Texture can embed arbitrary data
- Shaders can perform (almost) 

arbitrary computations
- OpenGL can be used to perform 

scientific, numerical computations
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GPU Accelerators

• Nvidia foresees the potential market 
and releases the CUDA API in 2007
- Compute Unified Device 

Architecture

• Nvidia also launches Tesla 
coprocessors
- ECC memory
- Double precision units
- No video output!

• AMD (formerly ATI)
- Close To Metal API
- Stream SDK

• Nvidia becomes the leader in GPU-
accelerated computing
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Think “highly parallel”!

• GPU feature many processors
- 5000+ in Nvidia Tesla V100 (Volta)
- At each cycle, many processors 

execute the same instruction on 
different data
• “Simple Instruction – Multiple 

Data” execution model (SIMD)
• GPUs require massive 

parallelism to achieve high 
performance

• GPU have on-board memory
- Up to +32GB of GDDR
- Data transfers between main 

memory and GPU embedded 
memory
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GPU Accelerators

• OpenCL (2008)
- Khronos Compute Working 

Group
• Apple, AMD, IBM, 

Qualcomm, Intel, Nvidia and 
many more

- OpenCL = Language + Library 
API

• OpenCL shares a lot of similarities 
with CUDA
- But OpenCL is portable…

…even on non-GPU 
architectures
• FPGA
• Manycore processors



The OpenCL Programming Environment
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Overview 

• OpenCL is both a set of library 
routines and a programming 
language

• Library routines categories:
- Hardware discovery
- Device (e.g. GPU) selection
- On-device memory 

management
- Memory transfers
- Program compilation
- Program launch

• OpenCL language
- C language + a few keywords
- Code is compiled, sent to 

device, and executed
- Code entry points are named 

“kernels”
• Kernel ≈ main function of a 

C program
Can be invoked from CPU 
side

• Notable differences:
Kernels are executed in 
parallel by many threads
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The big picture
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How to modify our vector on GPU1?
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1) Setup OpenCL context and work queue
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2) Allocate memory on GPU
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3) Send data to GPU
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4) Compile OpenCL “kernel”
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5) Execute kernel on GPU
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Place order 
“run!”
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6) Retrieve data back to RAM
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7) Enjoy your vector! J
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Typical workflow of a simple OpenCL program

• An OpenCL program typically follows these steps:
1. Configure an OpenCL “queue” which will serve as a mean to send 

orders to the target GPU
2. Allocate memory on GPU side
3. Transfer (copy) input data from RAM to GPU memory
4. Compile kernel for the target GPU architecture
5. Execute kernel on GPU (detailed later)
6. Retrieve output data (copy) from GPU memory to RAM
7. Use the results!

• Before we explore the OpenCL programming language, we need to 
understand the execution model of GPUs 
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Illustration with a good old Nvidia GPU

• Basic block = Streaming 
Multiprocessor (see Figure)
- SM are clusters of 8 Streaming 

Processors
• Local memory sharing
• Synchronization

• Streaming Processor
- 64 KB registers!
- Threads are just “sets of 

registers”
• Creation/destruction is free!

- Interleaved execution of 
sequential hardware threads
• Up to 128 per SP
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Illustration with a good old Nvidia GPU

• Only one instruction dispatch unit 
per Streaming Multiprocessor
- All SP execute the same 

instruction at the same clock 
cycle
• On different data

= Simple Instruction Multiple 
Data (SIMD)

• The Dispatch Unit takes 4 cycles 
to fetch & decode instructions
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Illustration with a good old Nvidia GPU

• Only one instruction dispatch unit 
per Streaming Multiprocessor
- All SP execute the same 

instruction at the same clock 
cycle
• On different data

= Simple Instruction Multiple 
Data (SIMD)

• The Dispatch Unit takes 4 cycles 
to fetch & decode instructions
- 4 sets of 8 threads are 

scheduled in a row, executing 
the same instruction

- Context switch is free!
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Warps and half-warps

• Threads are implicitly grouped in 
“warps”
- Warp = 32 threads (Nvidia)

• Note: on AMD cards, it is called 
a wavefront and it groups 64 
threads

- All threads of the same warp 
execute the same instruction at the 
same logical cycle
• No divergence!

• Loading data from global memory is 
expensive
- Therefore, more than 4 threads per 

SP are necessary
• 128 threads are enough to hide 

memory latency
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NVIDIA GPU Execution Model
Illustration with a good old Nvidia GPU

• GPU = set of Streaming 
Multiprocessors sharing a global 
memory

• Nvidia GTX240
- 30 SM
- 8x30 = 240 processors
- 128 threads max per processor
= 30,720 threads!

• Not exactly the usual meaning of 
“thread”…
- Data-parallelism

• Regular access patterns

- 31
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Let us come back and detail the typical OpenCL workflow

• An OpenCL program typically follows these steps:
1. Configure an OpenCL “queue” which will serve as a mean to send 

orders to the target GPU
2. Allocate memory on GPU side
3. Transfer (copy) input data from RAM to GPU memory
4. Compile kernel for the target GPU architecture
5. Execute kernel on GPU (detailed later)
6. Retrieve output data (copy) from GPU memory to RAM
7. Use the results!
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Let us come back and detail the typical OpenCL workflow

• An OpenCL program typically follows these steps:
1. Configure an OpenCL “queue” (among many other things…)

• See ocl_init function in src/ocl.c (EasyPAP)
Yep, it is as tedious as C socket creation J

2. Allocate memory on GPU side
• See ocl_alloc_buffers function in src/ocl.c (EasyPAP)
• clCreateBuffer returns an opaque type…

(obviously not usable as a pointer)
...to be later used as a parameter for kernel execution

3. Transfer (copy) input data from RAM to GPU memory
• clEnqueueWriteBuffer can be synchronous/asynchronous
• See end of ocl_send_image function
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Let us come back and detail the typical OpenCL workflow

• An OpenCL program typically follows these steps (continued) :
4. Compile kernel for the target GPU architecture

• See beginning of ocl_send_image function (so weird..!)
• clCreateProgramWithSource: attach program source (i.e. a 

char * pointer) to context
• clBuildProgram: compile program for all devices in context

5. Execute kernel on GPU
• See next slides J

6. Retrieve output data (copy) from GPU memory to RAM
• clEnqueueReadBuffer

7. Use the results!
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Kernels

• OpenCL is an extension of the C language
- New keywords: __kernel, __global, __local, etc.
- Intrinsic (predefined) functions

• get_global_id, get_local_id, etc.

• Although not required, it is a good idea to store OpenCL programs in 
*.cl disk files

• An OpenCL program must expose at least one “kernel” function
- That is, a function that can be invoked from the CPU side
- Can be seen as the traditional “main” function

• But an OpenCL program can expose multiple kernels
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Kernels

• When invoking an OpenCL kernel, one must specify
- The total amount of threads to be created

• Each thread will execute the same kernel
Very different from an OpenMP program, where only a single thread 
executes the main function

- The way threads should be numbered
• 1D, 2D or 3D : just pick what best fits your algorithm
• Threads can retrieve their unique id by using
get_global_id(0): rank along x axis
get_global_id(1): rank along y axis (if dim > 1D)
get_global_id(2): rank along z axis (if dim = 3D)

- How threads should be grouped in so-called OpenCL workgroups
• The role of workgroups will be discussed later
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Thread numbering

• Example: kernel working on a 
24x24 matrix, with one thread per 
cell (576 threads)

• Domain dimensions
2

• #threads along each dim
24

• #group_size along each dim 
8
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ScalVec: a simple 1D “scalar.vector” kernel

• “ScalVec” 1D kernel
- Vector “vec” lies in GPU’s global memory (hence “__global”)
- The kernel is executed with one thread per vector element

- No loop!
• Each thread handles one vector element… and that’s it!

__kernel void ScalVec(__global float *vec, float k)

{

   int index = get_global_id(0); // thread id

   

   vec[index] *= k;

}
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ScalVec: a simple 1D “scalar.vector” kernel

• “ScalVec” 1D kernel
- Vector “vec” lies in GPU’s global memory (hence “__global”)
- The kernel is executed with one thread per vector element

__kernel void ScalVec(__global float *vec, float k)

{

   int index = get_global_id(0); // thread id

   

   vec[index] *= k;

}

vec

threads
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2D kernels

• Images are DIM × DIM matrices of unsigned
- By default, kernels are executed with one thread per element (SIZE = DIM)

• Let us observe the kernel invocation side (kernel/c/sample.c)

unsigned sample_invoke_ocl (unsigned nb_iter)

{

  size_t global[2] = {GPU_SIZE_X, GPU_SIZE_Y};   // global domain size for our calculation

  size_t local[2]  = {TILE_W, TILE_H}; // local domain size for our calculation

  cl_int err;

  for (unsigned it = 1; it <= nb_iter; it++) {

    // Set kernel arguments

    err = 0;

    err |= clSetKernelArg (compute_kernel, 0, sizeof (cl_mem), &cur_buffer);

    check (err, "Failed to set kernel arguments");

    err = clEnqueueNDRangeKernel (queue, compute_kernel, 2, NULL, global, local, 0, NULL, NULL);

    check (err, "Failed to execute kernel");

  }

  return 0;

}
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2D kernels

• And now, the kernel itself (kernel/ocl/sample.cl)
- See how each thread retrieves its coordinates (x,y)
- Note: pixel(x,y) of img is at offset y * DIM + x

#include "kernel/ocl/common.cl"

__kernel void sample_ocl (__global unsigned *img)

{

  int x = get_global_id (0);

  int y = get_global_id (1);

  unsigned color = 0xFFFF00FF; // yellow

  img [y * DIM + x] = color;

}

By the way: OpenCL kernels are compiled with -DDIM=<Image size>
(that’s why we can use DIM here)
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2D kernels

• Let’s see how it works on a 256x256 image:
- ./run -s 256 -k sample --gpu
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2D kernels

• Note: we could use 1D numbering as well
- Create DIM*DIM threads

• 1D version of kernel/c/sample.c:

unsigned sample_invoke_ocl (unsigned nb_iter)

{

  size_t global[1] = {DIM * DIM}; // DIM * DIM workitems

  size_t local[1]  = {TILE_W * TILE_H};

  cl_int err;

  for (unsigned it = 1; it <= nb_iter; it++) {

    // Set kernel arguments

    err = 0;

    err |= clSetKernelArg (compute_kernel, 0, sizeof (cl_mem), &cur_buffer);

    check (err, "Failed to set kernel arguments");

    err = clEnqueueNDRangeKernel (queue, compute_kernel, 1, NULL, global, local, 0, NULL, NULL);

    check (err, "Failed to execute kernel");

  }

  return 0;

}
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2D kernels

• 1D version of kernel/ocl/sample.cl:

#include "kernel/ocl/common.cl"

__kernel void sample_ocl (__global unsigned *img)

{

  int index = get_global_id (0);

  unsigned color = 0xFFFF00FF; // yellow

  img [index] = color;

}

Output is identical
(trust me J)
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2D kernels

• Back to our 2D version
- Let us now introduce coordinate-sensitive colors

• To check if x and y are what we think…

#include "kernel/ocl/common.cl"

__kernel void sample_ocl (__global unsigned *img)

{

int x = get_global_id (0);

int y = get_global_id (1);

unsigned color = 0xFF; // opacity = 100%

color |= (x & 255) << 24; // the greater x, the more red we use

color |= (y & 255) << 8; // the greater y, the more blue we use

img [y * DIM + x] = color;

}

By the way: we use (… & 255) in case the kernel
is executed on images larger than 256x256…
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2D kernels

• We run the program the same way (no need to type ‘make’ J)
- ./run -s 256 -k sample -g
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2D kernels

• Great! Let us see how it works on larger images
- ./run -s 1024 -k sample -g



OpenCL with EasyPAP

- 48

2D kernels

• So far so good… But what if we ask for 40962 threads?
- ./run -s 4096 -k sample -g
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2D kernels

• 16 millions of threads executing the sample kernel? Seriously?
- Yes, and it proved to work!

• How can that be?
- No existing GPU can manage 16M hardware threads

• Tesla V100: 80 SM x 2048 ~= 160K threads
- At least, not simultaneously!
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2D kernels

• 16 millions of threads executing the sample kernel? Seriously?
- Yes, and it proved to work!

• How can that be?
- No existing GPU can manage 16M hardware threads

• Tesla V100: 80 SM x 2048 ~= 160K threads
- At least, not simultaneously!

• Threads are not alive at the same time!
- They are executed in batches of thousands
- Once a thread terminates, a new one is created

• Remember: threads creation is (almost) free
- Consequently: we must forget global synchronizations (barriers)
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2D kernels

• Back to the invocation side (kernel/c/sample.c)
- Let us create only DIM/2 threads along y

unsigned sample_invoke_ocl (unsigned nb_iter)

{

size_t global[2] = {GPU_SIZE_X, GPU_SIZE_Y / 2}; // global domain : DIM * DIM / 2 threads

size_t local[2]  = {TILE_W, TILE_H}; // local domain : groups of TILEX * TILEY

cl_int err;

for (unsigned it = 1; it <= nb_iter; it++) {

// Set kernel arguments

err = 0;

err |= clSetKernelArg (compute_kernel, 0, sizeof (cl_mem), &cur_buffer);

check (err, "Failed to set kernel arguments");

err = clEnqueueNDRangeKernel (queue, compute_kernel, 2, NULL, global, local, 0, NULL, NULL);

check (err, "Failed to execute kernel");

}

return 0;

}
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2D kernels

• Our kernel does not handle the whole image any more…
- ./run -s 256 -k sample -g
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2D kernels

• Let’s fix our kernel to paint the whole image again
- Each thread now computes 2 pixels

• The following code does the job!

__kernel void sample_ocl (__global unsigned *img)

{

int x = get_global_id (0);

int y = get_global_id (1);

unsigned color = 0xFF; // opacity = 100%

color |= (x & 255) << 24; // the greater x, the more red we use

color |= (y & 255) << 8; // the greater y, the more blue we use

img [y * DIM + x] = color;

// now address the lower half of image

y += get_global_size (1); // y += 128 in our example

color |= (y & 255) << 8; // blue

img [y * DIM + x] = color;

}



Threads and Global Memory Access
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OpenCL

• Coming back to our “ScalVec” kernel
- Same config, except that we spawn size-of-vector / 2 work items

__kernel void ScalVec(__global float *vec, float k)

{

   int index = get_global_id(0);

   

   vec[index*2] *= k;

   vec[index*2 + 1] *= k;

}
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OpenCL

• “ScalVec” kernel
- Same config, except that we spawn size-of-vector / 2 work items
- Performance is weak

__kernel void ScalVec(__global float *vec, float k)

{

   int index = get_global_id(0);

   

   vec[index*2] *= k;

   vec[index*2 + 1] *= k;

}



Memory concerns

- 58

OpenCL

• “ScalVec” kernel
- Same config, except that we spawn size-of-vector / 2 work items

__kernel void ScalVec(__global float *vec, float k)

{

   int index = get_global_id(0);

   int size = get_global_size(0); // #threads

   

   vec[index] *= k;

   vec[size + index] *= k;

}
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OpenCL

• “ScalVec” kernel
- Same config, except that we spawn size-of-vector / 2 work items

__kernel void ScalVec(__global float *vec, float k)

{

   int index = get_global_id(0);

   int size = get_global_size(0); // #threads

   

   vec[index] *= k;

   vec[size + index] *= k;

}
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Memory Access Coalescing

• To exploit full GDDR bandwidth, Nvidia GPUs aggressively try to 
coalesce contiguous memory accesses into larger ones

• Coalescing is performed at the level of half-warps
- If 16 contiguous threads access aligned, contiguous memory

• Then only one large (16-width) memory access is performed
• Otherwise, up to 16 accesses may be needed

• So, coming back to our previous example
• vec [N + get_global_id(0)] is OK

Contiguous threads access contiguous data
• vec [2 * get_global_id(0)] is not OK

Contiguous threads access scattered data
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Memory Access Coalescing

• What if we switch x and y in our sample kernel?
- The output is still correct, but…
- Performance becomes very weak!
- half-warps are contiguous along the x axis

• But they access vertical columns of data

__kernel void sample_ocl (__global unsigned *img)

{

  int x = get_global_id (0);

  int y = get_global_id (1);

  unsigned color = 0xFFFF00FF; // yellow

  img [x * DIM + y] = color;

}
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On the importance of data layout

• Example : Moving N particles in a 3D domain
- Each particle has a position (x,y,z) and a speed vector (dx,dy,dz)
- We typically use an Array of Structures (aka AoS)

• Good for Cache, isn’t it?

Array: x0 y0 z0 dx0 dy0 dz0 x1 y1 z1 dx1 dy1 dz1

particle 0 particle 1

Struct {

  float x, y, z;    // position

  float dx, dy, dz; // speed

} Particles [N];

…
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On the importance of data layout

• Moving particles on a GPU
- One thread per particle

• x += dx

Array: x0 y0 z0 dx0 dy0 dz0 x1 y1 z1 dx1 dy1 dz1

particle 0 particle 1

…

+= +=
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On the importance of data layout

• Moving particles on a GPU
- One thread per particle

• y += dy

Array: x0 y0 z0 dx0 dy0 dz0 x1 y1 z1 dx1 dy1 dz1

particle 0 particle 1

…

+= +=
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On the importance of data layout

• Moving particles on a GPU
- One thread per particle

• z += dz

- Poor coalescing opportunities L

Array: x0 y0 z0 dx0 dy0 dz0 x1 y1 z1 dx1 dy1 dz1

particle 0 particle 1

…

+= +=
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On the importance of data layout

• Moving particles on a GPU
- Would 3 threads per particle help?

• More parallelism J
• Missed opportunities of coalescing L

Array: x0 y0 z0 dx0 dy0 dz0 x1 y1 z1 dx1 dy1 dz1

particle 0 particle 1

…

+= += += += += +=
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On the importance of data layout

• Life would be easier if positions and speeds were separated! 
- Moving a particle is simply a 1D vector addition

• Very efficient on a GPU
• Each thread blindly adds two scalars

No time to think “I’m curious: is that a ‘x’ that I’m about to modify?”

pos: x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3

particle 0 particle 3

…

+

particle 1 particle 2

speed: dx0 dy0 dz0 dx1 dy1 dz1 dx2 dy2 dz2 dx3 dy3 dz3 …

+++++ ++++++
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On the importance of data layout

• What if we need to compute distances between particles?

𝑑!" = 𝑥! 	− 𝑥"
#
+ 𝑦! 	− 𝑦"

#
+ (𝑧! − 𝑧")#

- Say for each particle i, we must compute

+
$%"&'
"(!

𝑓(𝑑!")

• We launch one thread per particle (obviously)
- When threads access xj (even for consecutive values of j), 

addresses are not contiguous!
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On the importance of data layout

• The good solution is to opt for a “Structure of Arrays” (SoA) layout
- Six arrays: x, y, z, dx, dy, dz

- Actually, this layout also makes a lot of sense for CPUs
• Vectorization-compliant J

x: x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 …

y: y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 …

z: z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 …

dx: dx0 dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 …

dy: dy0 dy1 dy2 dy3 dy4 dy5 dy6 dy7 dy8 dy9 …

dz: dz0 dz1 dz2 dz3 dz4 dz5 dz6 dz7 dz8 dz9 …
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2D kernels

• Always possible to organize data in contiguous chunks?
- Let us consider the “matrix transpose” example

• Two images : in and out
• in[i,j] goes to out[j,i], or in[j,i] goes to out[i,j]
• In either case, half of memory accesses are bad!

• We’ll address this problem later…

__kernel void transpose_ocl (__global unsigned *in,

                             __global unsigned *out)

{

  int x = get_global_id (0);

  int y = get_global_id (1);

  out [x * DIM + y] = in [y * DIM + x];

}



Thread divergence
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Illustration with the NVidia GPU architecture 

• Reminder
- Threads are implicitly grouped 

in warps of 32 threads
- All threads of the same warp 

execute the same instruction 
at the same logical cycle
• No divergence!

• No divergence?
- How to handle conditional 

code?
if (…)
(…) ? (…) : (…) 
while (…)

sp

sp

sp

sp

Lo
ca

l m
em

or
y sp

sp

sp

sp

DPU

Dispatch Unit
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Illustration with the NVidia GPU architecture 

• What happens when threads 
execute a conditional instruction ?

• Threads belonging to the same 
warp cannot diverge

sp

sp

sp

sp

Lo
ca

l m
em

or
y sp

sp

sp

sp

DPU

Dispatch Unit

if (condition)

do_this ();

else

do_that ();
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Illustration with the NVidia GPU architecture 

• What happens when threads 
execute a conditional instruction ?

• Threads belonging to the same 
warp cannot diverge
- But some of them can ”sleep”

sp

sp

sp

sp

Lo
ca

l m
em

or
y sp

sp

sp

sp

DPU

Dispatch Unit

if (condition)

do_this ();

else

do_that ();
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Illustration with the NVidia GPU architecture 

• What happens when threads 
execute a conditional instruction ?

• Threads belonging to the same 
warp cannot diverge
- But some of them can ”sleep”

sp

sp

sp

sp

Lo
ca

l m
em

or
y sp

sp

sp

sp

DPU

Dispatch Unit

if (condition)

do_this ();

else

do_that ();
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Does it always hurt?

• Let us experiment to find out!
• Idea:
- Bench a simple kernel with various divergence patterns

• Perfect alternation
…
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Does it always hurt?

• Let us experiment to find out!
• Idea:
- Bench a simple kernel with various divergence patterns

• Perfect alternation

• Two by two

…

…
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Does it always hurt?

• Let us experiment to find out!
• Idea:
- Bench a simple kernel with various divergence patterns

• Perfect alternation

• Two by two

• Four by four

…

…

…
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Does it always hurt?

• Let us experiment to find out!
• Idea:
- Bench a simple kernel with various divergence patterns

• Perfect alternation

• Two by two

• Four by four

• And so on…

…

…

…

…
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Illustration with the NVidia GPU architecture 

• Impact of thread divergence wrt the number of consecutive “buddies” 
taking the same branch
- The stripes kernel accepts a user parameter

./run -l ... -k stripes -o -a 3

unsigned mask = (1 << PARAM);

if (x & mask)

out [y * DIM + x] = brighten (in [y * DIM + x]);

else

out [y * DIM + x] = darken (in [y * DIM + x]);
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Illustration with the NVidia GPU architecture 

x x x & (1 << 0) 
0 00000 00000

1 00001 00001

2 00010 00000

3 00011 00001

4 00100 00000

5 00101 00001

6 00110 00000

7 00111 00001

8 01000 00000

9 01001 00001

10 01010 00000

11 01011 00001

12 01100 00000

13 01101 00001

14 01110 00000

15 01111 00001
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Illustration with the NVidia GPU architecture 

x x x & (1 << 1) 
0 00000 00000

1 00001 00000

2 00010 00010

3 00011 00010

4 00100 00000

5 00101 00000

6 00110 00010

7 00111 00010

8 01000 00000

9 01001 00000

10 01010 00010

11 01011 00010

12 01100 00000

13 01101 00000

14 01110 00010

15 01111 00010
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Illustration with the NVidia GPU architecture 

x x x & (1 << 2) 
0 00000 00000

1 00001 00000

2 00010 00000

3 00011 00000

4 00100 00100

5 00101 00100

6 00110 00100

7 00111 00100

8 01000 00000

9 01001 00000

10 01010 00000

11 01011 00000

12 01100 00100

13 01101 00100

14 01110 00100

15 01111 00100
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Illustration with the NVidia GPU architecture 

x x x & (1 << 3) 
0 00000 00000

1 00001 00000

2 00010 00000

3 00011 00000

4 00100 00000

5 00101 00000

6 00110 00000

7 00111 00000

8 01000 01000

9 01001 01000

10 01010 01000

11 01011 01000

12 01100 01000

13 01101 01000

14 01110 01000

15 01111 01000
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Illustration with the NVidia GPU architecture 

• PARAM allow us to control how much consecutive buddies follow the 
same behavior:
- The first 2PARAM buddies take the same branch,

the next 2PARAM buddies take the other branch, and so on…
./run -l ... -k stripes -o -a 6
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./run -k stripes –tw 64 –th 4 -o -i 1000 -n

Radeon pro 560X
GeForce RTX 2070
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./run -k stripes –tw 64 –th 4 -o -i 1000 -n

Radeon pro 560X
GeForce RTX 2070

20 21 22 23 24 25 26 27 28Buddies
GP
U B

ran
d

0

200

400

600

800

1000

Ti
m
e
(µ
s)

32

64

Only intra-warp divergence is harmful!



Workgroups and Shared Memory
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• When running a kernel, we must 
specify how threads should be 
grouped
- E.g. By default, EasyPAP forms 

workgroups of 16x16 = 256 threads

• All threads in a workgroup are 
guaranteed to run on the same SM
- They can share data through local 

memory
- They can synchronize (barriers)

• As a side effect, workgroups constrain 
warp formation
- E.g. in a 2D 8x8 workgroup

• Warps spread over four lines of 
8 threads

1st warp

2nd warp
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./run -s 256 -k sample –o –tw 16 –th 16

__kernel void sample_ocl (__global unsigned *img)

{

  int x = get_global_id (0);

  int y = get_global_id (1);

  if ((get_group_id(0) + get_group_id(1)) % 2)

    img [y * DIM + x] = 0xFFFF00FF;

}
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./run -s 256 -k sample –o –tw 32 –th 8

__kernel void sample_ocl (__global unsigned *img)

{

  int x = get_global_id (0);

  int y = get_global_id (1);

  if ((get_group_id(0) + get_group_id(1)) % 2)

    img [y * DIM + x] = 0xFFFF00FF;

}
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./run -s 256 -k sample –o –tw 4 –th 64

__kernel void sample_ocl (__global unsigned *img)

{

  int x = get_global_id (0);

  int y = get_global_id (1);

  if ((get_group_id(0) + get_group_id(1)) % 2)

    img [y * DIM + x] = 0xFFFF00FF;

}
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Influence of workgroup shape on performance

• On a NVidia RTX 2070 card

• ./run -k sample -s 1024 -o –tw 16 –th 16 -i 1000 -n

- 10.419

• ./run -k sample -s 1024 -o –tw 64 –th 4 -i 1000 -n

- 11.878

• ./run -k sample -s 1024 -o –tw 4 -th 64 -i 1000 -n

- 24.382
- Reason: number of (uncoalesced) memory accesses



Dispatch Unit
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Hardware properties

• Several workgroups can reside 
on the same streaming 
multiprocessor
- Limited by hardware 

resources
• Registers
• Max HW threads per SP
• Local Memory

• Shared local memory
- Much faster than global 

memory
- Only a few kBytes!
- No coalescing

sp

sp

sp

sp

sp

sp

sp

sp

DPU

workgroup #0 workgroup #1

Shared local data for workgroup #1
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Sharing data through local memory

• Local memory is declared inside kernels using __local
• Example with this “oversimplified” pixelize kernel
- Each workgroup has its private ’color’ variable

• Thread from the upper left corner sets this shared variable
• Then threads synchronize to make sure ‘color’ has been written
• Finally, all threads set their pixel to this color

__kernel void pixelize_ocl (__global unsigned *img)

{

int x = get_global_id (0), y = get_global_id (1);

int xloc = get_local_id (0), yloc = get_local_id (1);

__local unsigned color;

if (xloc == 0 && yloc == 0) // upper left corner in each workgroup

color = img [y * DIM + x]; // only one thread per wgrp reads from global memory

barrier (CLK_LOCAL_MEM_FENCE);

img [y * DIM + x] = color;

}
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./run -l images/1024.png -k pixelize –g –tw 16 –th 16
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./run -l images/1024.png -k pixelize –g –tw 32 –th 8
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Tiling

• Workgroups can share more than a scalar value
- E.g. __local unsigned tile[TILE_H][TILE_W];
- Serves as a ”cache” in which data is fetched from global memory

• Let us use such “tiles” to solve our transpose problem!
- Idea

• Use local memory to compute transposed tiles
• ”memcpy” tiles to the right place in global memory
• Keep global memory accesses contiguous!

• As usual, we spawn one thread per matrix element
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Tiled transpose

1. Read from A and write 
“transposed data” into tile 2. Memcpy tile to B
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Tiled transpose : first step

1. Read from A and write 
“transposed data” into tile

tile

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [ ? ][ ? ] = in [y * DIM + x];

yloc

xloc

x

y
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Tiled transpose : first step

1. Read from A and write 
“transposed data” into tile

tile

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

yloc

xloc

x

y
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Tiled transpose : first step

tile

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

out [ ? * DIM + ? ] =

tile [yloc][xloc];

}

ylocxloc

x

y
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Tiled transpose : first step

tile

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

out [( ? + yloc) * DIM +

? + xloc] =

tile [yloc][xloc];

}

ylocxloc

x

y

xloc

yloc
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Tiled transpose : first step

tile

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

out [(x - xloc + yloc) * DIM +

y - yloc + xloc] =

tile [yloc][xloc];

}

ylocxloc

x

y

xloc

yloc
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./run -g -k transpose … -r 2

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

out [(x - xloc + yloc) * DIM +

y - yloc + xloc] =

tile [yloc][xloc];

}
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That’s better!

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned
tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

barrier (CLK_LOCAL_MEM_FENCE);

out [(x - xloc + yloc) * DIM +

y - yloc + xloc] =

tile [yloc][xloc];

}
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./run -g -k transpose -i 1000 -n -s <dim> 

2.0e11
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2.6e11

2.8e11
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Just for fun

Why the hell do we add
this extra column

we don’t even use?!

__kernel void transpose_ocl (

__global unsigned *in,

__global unsigned *out)

{

__local unsigned tile [TILE_H][TILE_W+1];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [xloc][yloc] = in [y * DIM + x];

barrier (CLK_LOCAL_MEM_FENCE);

out [(x - xloc + yloc) * DIM +

y - yloc + xloc] =

tile [yloc][xloc];

}
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./run -g -k transpose -i 1000 -n -s <dim> 

2.0e11

2.2e11

2.4e11

2.6e11

2.8e11

3.0e11

3.2e11

3.4e11

3.6e11

1024 2048 4096
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/s
)

DIM

Naive
Tiled

Tiled + Magic Trick
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

? ? ? ??? ? ???? ??? ? ??? ? ?tile

… …30 33 58 595756 62 6361602 310 6 754 31 32img
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

30 33 58 595756 62 6361602 310 6 754 31 32tile

… …30 33 58 595756 62 6361602 310 6 754 31 32img
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Back to “stripes”
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

30 33 58 595756 62 6361602 310 6 754 31 32tile
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

30 33 58 595756 62 6361602 310 6 754 31 32tile
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Back to “stripes”
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

30 33 58 595756 62 6361602 310 6 754 31 32tile
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Back to “stripes”
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

30 33 58 595756 62 6361602 310 6 754 31 32tile

… …30 33 58 595756 62 6361602 310 6 754 31 32img
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Assuming TILE_W is a multiple of 64…

• Implementation of 1-pixel-width stripes
- Divergence avoiding
- Memory coalescing

__local unsigned tile [TILE_H][TILE_W];

unsigned y = get_global_id (1), yloc = get_local_id (1);

unsigned x = get_global_id (0), xloc = get_local_id (0);

unsigned index = 2 * xloc;

tile[yloc][xloc] = in [y * DIM + x];

barrier (CLK_LOCAL_MEM_FENCE);

if (index < get_local_size (0)) {

tile [yloc][index] = darken (tile [yloc][index]);

} else {

index += - get_local_size (0) + 1;

tile [yloc][index] = brighten (tile [yloc][index]);

}

barrier (CLK_LOCAL_MEM_FENCE);

out [y * DIM + x] = tile [yloc][xloc];
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./run -k stripes -g –tw 256 –th 1 -n …

Radeon pro 560X opt
Radeon pro 560X
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./run -l images/1024.png -k pixelize -g

Simplified version Expected version
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./run -l images/1024.png -k pixelize -g

• Pixelizing
- All pixels within a tile adopt 

the same color
• Average color of all pixels

• For each tile:
- Sum += color of each pixel
- Avg = Sum / #pixels
- All pixels take the Avg color

• First step is a 2D reduction

Expected version
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Computing the sum of all pixels of a tile

• Adding colors
- Pixels are stored as unsigned 

integers
• RGBA8888 format

- Adding two raw pixels may 
lead to value overflow
• Convert each 8-bit 

component to a larger, 
separate integer

• OpenCL provide “vectors” 
of 2, 3 or 4 scalar values

int4 v;
v.x = 3; … v.w = 5;

__kernel void pixelize_ocl (

__global unsigned *in)

{

__local int4 tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [yloc][xloc] =

color_to_int4 (in [y * DIM + x]);

…

}
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Computing the sum of all pixels of a tile

• Reduction
- We first cache pixels into local 

memory
- Then we can perform our 2D 

reduction inside tile

__kernel void pixelize_ocl (

__global unsigned *in)

{

__local int4 tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [yloc][xloc] =

color_to_int4 (in [y * DIM + x]);

barrier (CLK_LOCAL_MEM_FENCE);

…

}
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Computing the sum of all pixels of a tile

• Reduction
- There is one thread per cell

• To maximize throughput of 
load operation

- How do we compute the sum 
of all cells?

__kernel void pixelize_ocl (

__global unsigned *in)

{

__local int4 tile [TILE_H][TILE_W];

int x = get_global_id (0);

int y = get_global_id (1);

int xloc = get_local_id (0);

int yloc = get_local_id (1);

tile [yloc][xloc] =

color_to_int4 (in [y * DIM + x]);

barrier (CLK_LOCAL_MEM_FENCE);

…

}
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Computing the sum of all pixels of a tile

• Let’s consider tiles of 8x4 cells
- There is one thread per cell

• To maximize throughput of 
load operation

- How do we compute the sum 
of all cells?

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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Computing the sum of all pixels of a tile

• Let’s consider tiles of 8x4 cells
- There is one thread per cell

• To maximize throughput of 
load operation

- How do we compute the sum 
of all cells?
• Well, we could perform a 

first wave of 4x4 additions
4 additions per row

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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Computing the sum of all pixels of a tile

• Let’s consider tiles of 8x4 cells
- There is one thread per cell

• To maximize throughput of 
load operation

- How do we compute the sum 
of all cells?
• Well, we could perform a 

first wave of 4x4 additions
4 additions per row

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

+= += += +=

This way…
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Computing the sum of all pixels of a tile

• Let’s consider tiles of 8x4 cells
- There is one thread per cell

• To maximize throughput of 
load operation

- How do we compute the sum 
of all cells?
• Well, we could perform a 

first wave of 4x4 additions
4 additions per row

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

+= += += +=

Or that way…
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Computing the sum of all pixels of a tile

• Let’s consider tiles of 8x4 cells
- There is one thread per cell

• To maximize throughput of 
load operation

- How do we compute the sum 
of all cells?
• Well, we could perform a 

first wave of 4x4 additions
4 additions per row
Half of threads do not work

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

+= += += +=

if (xloc < 4)

tile [yloc][xloc] += tile [yloc][xloc + 4];
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Computing the sum of all pixels of a tile

• Next step
• Second wave of 2x4 

additions
2 additions per row

4 4 2 2 1 1 1 1

4 4 2 2 1 1 1 1

4 4 2 2 1 1 1 1

4 4 2 2 1 1 1 1

+= +=
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Computing the sum of all pixels of a tile

• Next step
• Second wave of 2x4 

additions
2 additions per row
Only ¼ of threads 
participate

4 4 2 2 1 1 1 1

4 4 2 2 1 1 1 1

4 4 2 2 1 1 1 1

4 4 2 2 1 1 1 1

+= +=

if (xloc < 2)

tile [yloc][xloc] += tile [yloc][xloc + 2];
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Computing the sum of all pixels of a tile

• Next step
• Second wave of 2x4 

additions
2 additions per row
Only 1/8th of threads 
participate

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

+=

if (xloc < 1)

tile [yloc][xloc] += tile [yloc][xloc + 1];
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Computing the sum of all pixels of a tile

• Now what?

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1
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Computing the sum of all pixels of a tile

• Now what?
- We sum up the cells vertically, 

but only for the first column
• Avoid wasting local memory 

bandwidth 8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1
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Computing the sum of all pixels of a tile

• Now what?
- We sum up the cells vertically, 

but only for the first column
• Avoid wasting local memory 

bandwidth
• Only two threads participate

16 4 2 2 1 1 1 1

16 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

+=

+=

if (xloc == 0) {

if (yloc < 2)

tile [yloc][0] += tile [yloc + 2][0];

}
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Computing the sum of all pixels of a tile

• Now what?
- We sum up the cells vertically, 

but only for the first column
• Avoid wasting local memory 

bandwidth
• Last step: one thread 

participates

32 4 2 2 1 1 1 1

16 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

+=

if (xloc == 0) {

if (yloc < 1)

tile [yloc][0] += tile [yloc + 1][0];

}
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Computing the sum of all pixels of a tile
{
  __local int4 tile [TILE_H][TILE_W];
  int x    = get_global_id (0);
  int y    = get_global_id (1);
  int xloc = get_local_id (0);
  int yloc = get_local_id (1);

  tile [yloc][xloc] = color_to_int4 (in [y * DIM + x]);

  // Averaging each line
  for (int d = TILE_W >> 1; d > 0; d >>= 1) {
    barrier (CLK_LOCAL_MEM_FENCE);
    if (xloc < d)
      tile [yloc][xloc] += tile [yloc][xloc + d];
  }

  // Averaging first column only
  for (int d = TILE_H >> 1; d > 0; d >>= 1) {
    barrier (CLK_LOCAL_MEM_FENCE);
    if (xloc == 0 && yloc < d)
      tile [yloc][xloc] += tile [yloc + d][xloc];
  }

  barrier (CLK_LOCAL_MEM_FENCE);
  in [y * DIM + x] = int4_to_color (tile [0][0] / (int4)(TILE_W * TILE_H));
}
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Computing the sum of all pixels of a tile

• A simpler solution is to consider 
the tile as a 1D array!

__local int4 tile[TILE_H * TILE_W];

int loc = get_local_id (1) * TILE_W +
get_local_id (0);

• Perform a simple 1D-reduction of 
all values in tile

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

tile
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Computing the sum of all pixels of a tile

{
  __local int4 tile [TILE_H * TILE_W];
  int x    = get_global_id (0);
  int y    = get_global_id (1);
  int loc  = get_local_id (1) * TILE_W + get_local_id (0);

  tile [loc] = color_to_int4 (in [y * DIM + x]);

  for (int d = (TILE_W * TILE_H) >> 1; d > 0; d >>= 1) {

    barrier (CLK_LOCAL_MEM_FENCE);

    if (loc < d)
      tile [loc] += tile [loc + d];
  }

  barrier (CLK_LOCAL_MEM_FENCE);

  in [y * DIM + x] = int4_to_color (tile [0] / (int4) (TILE_W * TILE_H));
}
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Who on earth loves pixelization?
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• What if TILE size exceeds workgroup maximum size?
- We can no longer use our method…

• See pixelize_ocl_big



Final notes about reductions

- 141

• Workgroup-wide reductions are part of OpenCL 2.1 specification
- Few implementations available L
- Too bad, because it is supported by most hardware

• For reduction on large data sets (> workgroup max size), multi-pass 
kernels must be used
- No accelerator-wide barrier
- Barrier between successive kernels

• Each kernel performs separate per-workgroup reductions, and 
write results in memory

• Loop until #elements <= workgroup size
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• Detecting kernel stability on GPU is “kind of a reduction”
• Each thread has a ’changed’ value

We want to compute a unique ‘stable’ value
Is it worth doing it entirely on the GPU?



Some OpenCL kernels are straightforward…
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Mandelbrot

• Mandelbrot is a compute-bound 
kernel
- No memory access challenge
- No data reuse
- There is intra-warp divergence

• As in our AVX version…
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Mandelbrot

• Mandelbrot is a compute-bound 
kernel
- No memory access challenge
- No data reuse
- There is intra-warp divergence

• As in our AVX version…

- Code is similar to the 
sequential one!

__kernel void mandel_ocl (__global unsigned *img,
                          float leftX, float xstep,
                          float topY, float ystep,
                          unsigned MAX_ITERATIONS)
{
  int i = get_global_id (1);
  int j = get_global_id (0);
  float xc = leftX + xstep * j;
  float yc = topY - ystep * i;
  float x = 0.0, y = 0.0; // Z = X + i*Y

  unsigned iter;
  for (iter = 0; iter < MAX_ITERATIONS; iter++) {
    float x2 = x * x;
    float y2 = y * y;

    if (x2 + y2 > 4.0) // Stop iterations when |Z| > 2 
      break;

    float twoxy = (float)2.0 * x * y;
    x = x2 - y2 + xc;
    y = twoxy + yc;
  }

  img[i * DIM + j] = (iter < MAX_ITERATIONS) ?
                               mandel_iter2color (iter) :
                               0x000000FF; // black
}
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Hybrid Computing

• Implementing a CPU+GPU 
Mandelbrot should be a no-brainer
- No data exchange needed 

between iterations!
• Things would be different for 

a stencil code
How about a hybrid abelian 
sandpile uh? 😇

- Fixed partitioning
• CPU takes n tile rows
• GPU takes NB_TILES_Y-n

tile rows
Go and try with EasyPAP!

GPU

CPU
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• Intel Xeon Phi coprocessor
- [KNC, 2012]
- 61 cores, in-order, superscalar (1,1 

- 1,3GHz, 22nm)
- 4-way hyperthreading (244 threads)
- 8 – 16 GB GDDR5
- 5,5GT/s, 512 bits
- Cache

• L1 32KB/core
• L2 512KB/core

- ~1Tflop
- 225-300W

• Xeon Phi is
- A PCIe accelerator board
- A full x86 PC running Linux
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Implicit Vectorization

• The OpenCL runtime system spawns 240 OS threads
- OS threads pinned on each core

• OpenCL workgroups are dispatched among threads
- Each workgroup is executed sequentially by one thread

• At least 240 workgroups are needed to feed all cores

• Kernels are implicitely vectorized along dimension 0
- Work items are grouped to form get_local_size(0)/16 vectors 

__Kernel void foo(…)
For (int i = 0; i < get_local_size(2); i++)

For (int j = 0; j < get_local_size(1); j++)
For (int k = 0; k < get_local_size(0); k += VECTOR_SIZE)

Vectorized_Kernel_Body;
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Code divergence within workgroups

• Conditional code is not harmful when all work items (within a WG) are 
guaranteed to execute the same branch
- if (get_local_id (1) == y)

foo();
• In other cases, code has to be “masked” and both IF & ELSE parts are 

executed for all work items
if (get_global_id (0) % n == 0)

res = IF_code ();
else

res = ELSE_code ();

gid16 = get16_global_id (0);
Mask = compare16int ((gid % broadcast16 (32)), 0)
Res_if = IF_code ();
Res_else = ELSE_code ();
Res = (res_if & mask) | (res_else & not(mask));
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• Many topics we did not cover
- Unified Memory
- Atomic operations
- Out-of-order queues, synchronizations through events
- Etc.

• OpenCL 3.0 (December 2020)
- Most features of OpenCL 2.x are… optional
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• OpenMP is a higher-level, far more versatile approach
- Support for irregular, task parallelism
- Incremental parallelization of the code

• OpenCL is a low-level, accelerator-focused approach
- ”Think Massively Parallel”

• Hundreds of thousands of thread execute the code right from the start
- Forget about global synchronizations, collective data movements

• Too expensive

• On massively multicore machines
- Global synchronizations/data exchanges will also become too expensive
- Do we really want to schedule individual tasks on thousands of cores?
- Starting from a sequential program is not always a good idea
- Maybe the truth is somewhere in between 😇
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OpenMP 4.0

• Since OpenMP 4.0 specification

#pragma omp target device(0) map(to:A, B) map(tofrom:C)
#pragma omp teams num_teams(num_blocks) num_threads(bsize) 
#pragma omp distribute
for (int i = 0; i < N; i ++)

#pragma omp parallel for
for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)
C[i][j] += A[i][k] * B[k][j];
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OpenMP 4.0

• OpenMP 4.0 (2013)
- We still miss full-featured compilers

• IBM XL compiler
• Intel icx

• OpenACC (2012)
- Cray, CAPS, Nvidia and PGI
- PG Compiler

• Efficient code generation on Nvidia GPUs
- Intended to serve as a temporary solution

• Until OpenMP integrates 




