
Data structures
for 3d meshes

The EasyPAP Team

Numerical simulation

• Provide valuable insights and aiding
in the understanding of
complex fluid flow phenomena
• difficult to analyze using analytical

methods or physical experiments
• blast wave propagation during

rocket take-off
• launch vehicle stage separations
• noise generated by aircraft

propellers

Numerical modeling of phenomena

Geometry Meshes

About Meshes

• Meshes com from .OBJ files
• Straightforward text format

• Vertices, faces, connectivity
• [+ default partitioning]

v 1.3764 0.76354 0.0236
…
f 0 1 2
f 0 2 3
…
n 1 15 20
n 0 2
…

• Most information is only used for 3D
display

0
201

2

14 15

mesh

Doing computations on unstructured meshes

• A value representing a physical
quantity (e.g. temperature) is
attached to each cell
• Normalized in [0.0..1.0]

1.0
0.50.5

0.25

0.25 0.5

Doing computations on unstructured meshes

• A value representing a physical
quantity (e.g. temperature) is
attached to each cell
• Normalized in [0.0..1.0]

• Cells are colored by interpolation
using a gradient palette

1.0
0.50.5

0.25

0.25 0.5

0.0
(blue)

1.0
(red)

0.25
(cyan)

0.5
(green)

0.75
(yellow)

Doing computations on unstructured meshes

• A value representing a physical
quantity (e.g. temperature) is
attached to each cell
• Normalized in [0.0..1.0]

• Cells are colored by interpolation
using a gradient palette

1.0
0.50.5

0.25

0.25 0.5

0.0
(blue)

1.0
(red)

0.25
(cyan)

0.5
(green)

0.75
(yellow)

Doing computations on unstructured meshes

• A value representing a physical
quantity (e.g. temperature) is
attached to each cell
• Normalized in [0.0..1.0]

• Cells are colored by interpolation
using a gradient palette

Working with meshes in EasyPAP

• Pixels ➙ Cells
• Variable number of neighbors

• Colors ➙ float values

• In EasyPAP, the programmer sees
• NB_CELLS
• cur_data (cell) and next_data (cell)

• Arrays of floating-point values
• Remember: values must be in range

0.0-1.0

Setting a simple 2-point palette
void sample3d_config (char *param)
{
// Choose color palette

 float colors[] = {0.0f, 0.8f, 0.8f, 1.f, // cyan
 0.8f, 0.0f, 0.8f, 1.f}; // pink
 mesh_data_set_palette (colors, 2);
}

Example alternating 0 and 1

///////////////////////////// Sequential version (seq)
// Suggested cmdline:
// ./run -lm <mesh_file> -k sample3d -si
unsigned sample3d_compute_seq (unsigned nb_iter)
{
 for (unsigned it = 1; it <= nb_iter; it++)
 for (int c = 0; c < NB_CELLS; c++)
 cur_data (c) = (float)(c & 1);

// Stop after first iteration
 return 1;
}

Where are my tiles?

• Pixels ➙ Cells
• Variable number of neighbors

• Colors ➙ float values

• Tiles ➙ Patches
• Obtained either by

• Space filling curves
• Scotch partitioning library

12

Where are my tiles?

• Pixels ➙ Cells
• Variable number of neighbors

• Colors ➙ float values

• Tiles ➙ Patches
• Obtained either by

• Space filling curves
• Scotch partitioning library

13

The Scotch Graph Partitioner
• Scotch is a graph partitioning library

• F. Pellegrini, Univ. Bordeaux

• It optimizes workload distribution effectively

• Scotch is designed for parallel computing
environments
• It offers multiple efficient and flexible algorithms.

• The library supports multiple graph formats.

Accessing mesh connectivity

• In EasyPAP, the programmer sees
• NB_CELLS
• cur_data (cell) and next_data (cell)

• And
• nb_neighbors (int cell)
• nth_neighbor (int cell, int n)

• max_neighbors ()
• Max connectivity in the whole graph

0
201

2

14 15

mesh

Mesh connectivity:
a “compact edge array” is used by default

0
201

2

14 15

mesh

20 1 15 0 2 1 14 … … … …neighbor

…first_neighbor
0 1 2 3 N

Neighbors of cell #i are stored in neighbors [first_neighbor[i] .. first_neightbor [i+1] – 1]

Mesh connectivity

• Programmers can directly access
the compact edge array
• neighbor_start (int cell)

• Index of first neighbor
• neighbor_end (int cell)

• Index of last neighbor + 1
• neighbor (int index)

0
201

2

14 15

mesh

Accessing mesh connectivity in EasyPAP

for (int nn = 0; nn < nb_neighbors (c); nn++) {
 int n = nth_neighbor (c, nn);
 float value = cur_data (n);
 …
}
// is equivalent to
for (int id = neighbor_start (c);
 id < neighbor_end (c);
 id++) {
 int n = neighbor (id);
 float value = cur_data (n);
 …
}

0
201

2

14 15

mesh

Towards a more regular data structure
for GPUs and vector instructions
• Idea

• MAX_NEIGHBORS is known
• We can waste a little space and

use a 2D array 0
201

2

14 15

mesh
20 1 150

1

2

3

MAX_NEIGHBORS columns

0 2 X
1 14 X

…

cells

A SoA layout would better meet our needs

• 'neighbors_soa’ is a 1D array
padded for alignment purposes

0
201

2

14 15

mesh

This is what is used by default in AVX and OpenCL implementations

20

1

15

neighbor 0
MAX_NEIGHBORS

lines

0

2

X

1

14

X

cells

neighbor 1

neighbor 2

0 1 2 3

…

Round(N)-1N-1

offset

