
System Programming:
an introduction

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

1

https://gforgeron.gitlab.io/progsys/

Goals

• Understand how to use the Operating System API efficiently
• Get insights about how Operating Systems work

• In-depth cover of the following topics
• File operations
• Process management
• Communication (pipes)
• Signals

+ Introduction to parallel programming

2

Organization

• System Programming strongly relies on practice work
• 1h20 lecture a week
• 2h40 lab session week

• Evaluation
• Two mid-course tests (DS1, DS2)
• One mini-project + periodic Moodle polls (Moodle)
• Final grade = 30% DS1 + 40% DS2 + 30% Moodle

3

Bibliography

• UNIX: Programmation et Communication
J.M. Rifflet, J.B. Yunes
Dunod

• Upcoming lecture slides (+ source code of examples)
• https://gforgeron.gitlab.io/progsys/cours/

4

https://gforgeron.gitlab.io/progsys/cours/

What is an Operating System?

- 5

- 7

What’s the purpose of an Operating System?

• Do I need one?
• Well, not every personal computer does have one… But most of them do!

• Why do we use Operating Systems?
• Hardware abstraction and code factorization

• Device drivers: better portability and programmability

• High-level abstractions
• Files, Windows (Graphical Interface)

• Resource virtualization
• Memory, CPU, disk: seamlessly shared by applications and users
• A faulty process causes no damage to others, neither to the “system”

- 8

An OS is a kind of abstract machine

• It is composed of several important parts
1. A set of device drivers (= code)
2. A set of programs (= code)

• Some of these programs are running in the form of background processes
• So-called daemons: inetd, cupsd, sshd, syslogd, etc.

• Some others are executed on demand
• Internet navigator
• File explorer
• Email client
• Etc.

3. A set of libraries (= code)
4. A mysterious authority which rules the world

- 9

Dr Jekyll and Mr Hyde

• Operating Systems provide us with great high-level features
• Graphical Interfaces
• Multi-tasking

• To do so, they stand in between applications and the hardware
• On good old single-user Operating Systems (e.g. MS DOS)

• Programs were executed one at a time… and could enjoy direct access to the hardware
• They could corrupt the OS memory, freeze the machine, etc.
• Great times!

• On nowadays’ systems
• The OS hinders direct access to the hardware

• How can that be?

- 10

Processor

RAM

Disk

GPU

Typical Computer Architecture

11

Processor

RAM

Disk

GPU

Where is the first instruction?

1. The CPU needs instructions!

2. The RAM is empty

3. OS bootstrap is probably on disk

4. To fetch theses instructions to
RAM…

5. …CPU needs instructions!
goto 1

12

The BIOS (aka ROM BIOS or System BIOS)

• Firmware stored in ROM chip / flashable memory
• Contains the very first instructions executed by the processor

• No BIOS = No Boot

• The BIOS is responsible for
• Hardware discovery and initialization

• CPUs, memory, I/O controllers, devices, etc.
• Hardware configuration
• OS boot

• In the PC World, legacy BIOS has been replaced by the more powerful UEFI
• Unified Extensible Firmware Interface (2005)
• But we still call it BIOS J

13

time

actor

BIOS

power on

14

time

actor

BIOS

power on

15

time

actor

BIOS

power on

Kernel

kernel is loaded
from disk

16

time

actor

BIOS

power on

Kernel

jump

kernel starts

17

time

actor

BIOS

power on

Kernel

jump

kernel starts

18

time

actor

BIOS

power on

Kernel

P0

jump

creation of P0
by the kernel

19

time

actor

BIOS

power on

Kernel

P0

jump

jump

P0 starts

20

time

actor

BIOS

power on

Kernel

P0

jump

jump

P0 starts

21

time

actor

BIOS

power on

Kernel

P0

jump

jump

What if P0 enters an infinite loop?

22

Interrupts

• An interrupt is a (rude) signal sent to a CPU
• Can be sent by external hardware

• Keyboard, mouse, timers, etc.
• Or raised by the CPU itself

• No information attached, except interrupt number

• Most of the time, the CPU is forced to handle interrupts with no delay
• Jump to a predefined routine address (interrupt handler)
• Each interrupt can have its own interrupt handler

• An interrupt vector table must be setup in RAM (one entry per interrupt)
• Done by the kernel!

• The interrupt handler calls “iret” to resume previous execution

23

Interrupts

• Moving the Mouse generates interrupts

• Pressing (and releasing) the shift key on the keyboard generates 2
interrupts

• The Network Interface Card (NIC) generates an interrupt each time a
packet is received

• Etc.
• Try xosview under Linux

24

Implementing Time Sharing

• To prevent processes running during unbounded periods, the kernel
sets up a timer
• A timer interrupt will be periodically triggered (~ 10ms)
• This ensures that the associated kernel routine will be executed on a regular

basis

• Of course, the Interrupt Vector Table must be initialized beforehand!

25

time

actor

BIOS

power on

Kernel

P0

jump

jump intr

Timer
interrupts

Timer interrupt handler

26

time

actor

BIOS

power on

Kernel

P0

jump

jump intr iret

Timer
interrupts

Timer interrupt handler

27

time

actor

BIOS

power on

Kernel

P0

jump

jump intr iret

Timer
interrupts 28

time

actor

BIOS

power on

Kernel

P0

jump

jump intr iret

Timer
interrupts 29

time

actor

BIOS

power on

Kernel

P0

P1

30

Restricting Processes’ privileges

• Ok, great: processes can no longer run forever
• timer interrupts allow the kernel to stop/kill a long running process

• Hmm wait… What if
• P0 changes the time interrupt handler routine address in the table?

31

Restricting Processes’ privileges

• Ok, great: processes can no longer run forever
• timer interrupts allow the kernel to stop/kill a long running process

• Hmm wait… What if
• P0 changes the time interrupt handler routine address in the table?
• P0 reads the keyboard while a user is typing his session password?

32

Restricting Processes’ privileges

• Ok, great: processes can no longer run forever
• timer interrupts allow the kernel to stop/kill a long running process

• Hmm wait… What if
• P0 changes the time interrupt handler routine address in the table?
• P0 reads the keyboard while a user is typing his session password?
• P0 switches the machine off?

• We have a problem!

33

time

actor

Restricting Processes’ privileges

Kernel

P0

P1

BIOS

“I’m talking about drawing a line in the sand, Dude. Across this line, YOU DO NOT…”
[Walter Sobchak, 1998]

34

Restricting Processes’ privileges

• We want to restrict what processes can do
• Only the kernel should be almighty

• Let’s assume we can establish a list of forbidden CPU instructions

• How to prevent processes from calling specific instructions?
• Clever compiler?
• Real-time scan of the program by the kernel?

35

Restricting Processes’ privileges

• This can be done only by the hardware, that is, the CPU
• Privileged instructions are flagged

• The CPU can run in (at least) two different modes:
• User mode (aka Protected mode) / Kernel mode (aka Real mode)
• The current mode is stored in a control register

• In user mode, only a subset of the CPU instruction set is available
• If the CPU is about to execute a privileged instruction in user mode…
 … an exception is raised (like an interrupt)

36

time

actor

Restricting Processes’ privileges

37

time

actor

Restricting Processes’ privileges

• The CPU wakes up (power on) in
kernel mode
• So BIOS and kernel initialize in

kernel mode

• The kernel gives up its privileges
by switching to user mode…
• By changing the mode bits in the

control registerKernel
mode

User
mode

Switch to user mode
just before the jump

jump

38

time

actor

Restricting Processes’ privileges

• The CPU wakes up (power on) in
kernel mode
• BIOS and kernel both start in

kernel mode

• At some point, the kernel gives
up its privileges
• Explicit switch to user mode

= changing the mode number
 in the control register

Kernel
mode

User
mode

Unauthorized instruction

Privileged instruction
exception handler

exception

39

Restricting Processes’ privileges

• Obviously, a process should not be able to easily go back to kernel
mode

40

Restricting Processes’ privileges

• Obviously, a process should not be able to easily go back to kernel
mode
• Explicit change to the control register is only possible in kernel mode

• Interrupts automatically enter kernel mode
• And iret (Interrupt RETurn) automatically goes back to previous mode

41

time

actor

Kernel

P0

P1

42

Requesting privileges

• Ok, the kernel is safe
• Processes cannot directly access the hardware

• But this brings a new problem:
• At some point, processes NEED to execute privileged instructions

• Display a string in the terminal (e.g. printf)
• Read a character from the keyboard (e.g. getc)
• Create a new process (e.g. fork)

• How to allow processes to temporarily execute privileged instructions?
• Ask kernel for permission + instructions check + signal when done?
• Ask for privileges during a limited period?

43

Requesting privileges

• We need a safe way to do it
• We already have a mechanism to switch to kernel mode…

44

Requesting privileges

• We need a safe way to do it
• We already have a mechanism to switch to kernel mode: interrupts!

• Let’s use a specific instruction to raise a software interrupt
• int 80h (Linux x86 32bit kernels)
• syscall (Linux x86 64bit kernels)

45

Requesting privileges

• We need a safe way to do it
• We already have a mechanism to switch to kernel mode: interrupts!

• Let’s use a specific instruction to raise a software interrupt
• int 80h (Linux x86 32bit kernels)
• syscall (Linux x86 64bit kernels)

• Idea
• The kernel has a set of routines which can be useful to processes
• To invoke one of these routines, a process performs a system call

• How do we specify the desired routine?

46

Requesting privileges

• We need a safe way to do it
• We already have a mechanism to switch to kernel mode: interrupts!

• Let’s use a specific instruction to raise a software interrupt
• int 80h (Linux x86 32bit kernels)
• syscall (Linux x86 64bit kernels)

• Idea
• The kernel has a set of routines which can be useful to processes
• To invoke one of these routines, a process performs a system call

• Put the routine number into a register (%eax on x86_84 architectures)
• Raise the interrupt

47

System calls

• Example:
• C implementation of the file

”getpid” function in libc

pid_t getpid (void)

{

 mov __NR_getpid, %eax

 syscall

 ret

}

48

System calls

• On the kernel side, a table contains the addresses of routines
implementing systems calls
• sys_getpid, sys_open, sys_write, sys_read, etc.

• The syscall interrupt handler uses the number found in %eax (on x86
processors) to call the requested routine

• Kernel and libc need to be synchronized!
• unistd.h, which assigns numbers to system call, is included on both sides

49

System calls

• Why is it a safe mechanism?
• Because the process does not

specify a routine address, but a
number
• The kernel has complete control on

the code
• Parameters checking is performed by

the kernel and cannot be skipped

• What parameters? Where are
they?
• They’re pushed on the stack when

calling the stub

pid_t getpid (void)

{

 mov __NR_getpid, %eax

 syscall

 ret

}

50

System calls & library calls

• Modern operating systems provide hundreds of system calls
• ~330 in Linux, ~530 in Mac OS X

• The libc features a lot more routines
• Is it easy to distinguish between system calls and regular routines?

• No, but who cares?

• If you care
• You can run your program under the Linux strace utility
• Or you can disassemble the very first instructions to check for the syscall CPU instruction

51

Structure of an OS

- 52

KERNEL
(process scheduling, memory management, I/O)

Hardware

API: system calls

sshd syslogd

processes

firefox xterm bash

code
+

libraries

53

