System Programming:
File Management

Raymond Namyst

Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

The concept of File

* A central concept in Unix
» “All is File” philosophy
e Regular disk files, but also
* Terminal
* Devices (mouse, keyboard)

e Network sockets
e FEtc.

e User view of a Disk File
e Contiguous series of
* Known length, but may expand/shrink dynamically
e Access rights (rwx)
e Can be referenced by multiple links (paths)

Two File Management APIs

libc
File API

kernel

File AP API: system caIIs

Hardware

The concept of File

* Before we can read from/write into a file, we must open it

 Why can’t we just read directly ?
* read (“/net/cremi/dupont/myfile.txt”, bufferi, ...)
* read (“/net/cremi/dupont/myfile.txt”, buffer2, ...)

The concept of File

* Before we can read from/write into a file, we must open it

 Why can’t we just read directly ?
* read (“/net/cremi/dupont/myfile.txt”, bufferi, ...)
* read (“/net/cremi/dupont/myfile.txt”, buffer2, ...)

* Partly for efficiency reasons
* To access file “/net/cremi/dupont/myfile.txt”, the OS must check
That there is a “net” entry in the “/” directory
That ”/net” is a directory and that the user can traverse it (x)
That there is a “cremi” entry in the ”/net” directory
That “/net/cremi” is a directory and that the user can traverse it (x)

That “/net/cremi/dupont/myfile.txt” is a file and that the user can read it (r)

Opening Files

* Before we can read from/write into a file, we must open it
int open (const char *path, int oflag, ...);

* Open performs the appropriate checks, and returns a file descriptor
* This file descriptor is a key which will

* Accelerate upcoming read/write operations
* Maintain the “current position” in the file

Opening Files

* Before we can read from/write into a file, we must open it
int open (const char *path, int oflag,

* Open performs the appropriate checks, and returns a file descriptor
* This file descriptor is a key which will

* Accelerate upcoming read/write operations
* Maintain the “current position” in the file

e oflag:
* O RDONLY, O WRONLY or O RDWR
* Optional: 0 CREAT, O TRUNC, O SYNC, etc.

 When a file is created, the third parameter sets access rights (octal notation)
e 0750=111101000 = rwxr-x—---
* 0666=110110110=rw-rw—-rw-—

Opening Files

 See ouverture.c...

Side note about process representation

Processes can be
represented this way:

Po
Kernel
space

attributes

Side note about process representation

Processes can be
represented this way: But reality is (obviously) more like:

Po
Kernel Kernel
space space

attributes attributes

L KERNEL }
Process
S B—
list

fd = open (“file.txt”, O_RDONLY);

fd = open (“file.txt”, O_RDONLY);

process

fd[|

I-node table
“file.txt”

_ information
Size

Access rights // node
Owner
Ref counter

fd = open (“file.txt”, O_RDONLY);

process

fd[]

Opened files table I-node table
“file.txt”

: information
Mode: RD_ONLY Size

Offset: 0 Access rights ~_|— node
Ref counter: 1 Owner
File info: — | Ref counter

fd = open (“file.txt”, O_RDONLY);

process

Opened files table I-node table
“file.txt”

: information
Mode: RD_ONLY Size

Offset: 0 Access rights ~_|— node
Ref counter: 1 Owner
fiIe File info: — | Ref counter

descriptor
table

fd = open (“file.txt”, O_RDONLY);

From now on, read and write operations will use 3

as a descriptor identifying the opened record
process

Opened files table I-node table
“file.txt”

: information
Mode: RD_ONLY Size

Offset: 0 Access rights ~_|— node
Ref counter: 1 Owner
fiIe File info: — | Ref counter

descriptor
table

fd = open (“file.txt”, O_RDONLY);

process

Opryed files table I-node table
“file.txt”

: information
Mode: R?_ONLY Size: 13

Offset: 0 Access rights: rw-_|—" node
Ref counter: 1 Owner
fiIe File info: — |

descriptor
table

Ref counter

Reading from a File

e Reading from the file and writing to process memory
ssize t read(int fildes, void *buf, size t nbyte);

* Return value:
e -liferror

* Number of bytes read (and copied to buf)
* |f zero, then we have reached the End Of File

Reading from a File

* See lecture.c

read (fd, buffer, 4)

process

I-node table
“file.txt”

: information
Mode: Rd)_ONLY Size

Offset: 4° Access rights ~_|— node
Ref counter: 1 Owner
fiIe File info: — | Ref counter

descriptor
table

Writing into a File

* Reading from memory and writing to the file
ssize t write(int fildes, void *buf, size t nbyte);

* Return value:
e -liferror

* Number of bytes written
e Can belessthan nbyte..

* Writing beyond end-of-file automatically extends the file

fd =open (“file.txt” O WRONLY | O CREAT, 0666);

(A fel v fJofwlw]ofr [i [d]!]w]

Opened files table I-node table
“file.txt”

) information
Mode: WR_ONLY Size: 13
Offset: 0 Access rights: rw-_|—" node

Ref counter: 1 Owner
File info: — | Ref counter

write (fd, “Bonjour”, 7);

process

Opened files table I-node table
“file.txt”

: information
Mode: WR_ONLY Size: 13

Offset: Access rights: rw-_|—" node
Ref counter: 1 Owner
File info: — |

Ref counter

Writing into a File

e See ecriture.c

Take away of previous lecture

| A fefl v Jofwlw]ofr [i [d]!]w]

Opryed files table

Mode: R?_ONLY
Offset: 0

) *| Ref counter: 1
file File info:

descriptor
table

Coping with structured data

* How to store integers into a file?
e Say we have a function that generates a series of integers

* There are several ways
* Ascii representation
* Raw integers

Coping with structured data

* Writing the representation into a File
* Convert integer into string
* E.g.using sprintf
* Write string to file
* Think about a separator...

* Pros
e Readable like a text file
e Portable

* Cons

Coping with structured data

* Writing the representation into a File
* Convert integer into string
* E.g.using sprintf
* Write string to file
* Think about a separator...

* Pros
e Readable like a text file
e Portable

* Cons
* Reading back the file

* Finding separators
e Convert string back to integer
* No efficient (direct) access to the Nt integer

Coping with structured data

* Writing the representation into a File
* int 1 = ..; write (fd, &i, sizeof (int));

* Pros
* Performance of both read/write operations
* Efficient (direct) access to the Nt integer
* Index files

e Cons

Coping with structured data

* Writing the representation into a File
* int 1 = ..; write (fd, &i, sizeof (int));

* Pros
* Performance of both read/write operations
* Efficient (direct) access to the Nt integer
* Index files

* Cons
* File readability
* Hexdump ©

* Portability
* Only works if file is generated AND accessed on the same processor architecture

Pre-opened descriptors

 Standard input/output

* E.g. Terminal
« 0: STDIN FILENO
« 1: STDOUT FILENO
* 2: STDERR FILENO

process

Pre-opened descriptors

process

0]

pened files table

Mode: RD_ONLY
Offset

Ref counter: 1
File info:

I-node table

Terminal

0]
1
2
3
4
5
6
7

Mode: WR_ONLY
Offset

Ref counter: 1
File info: /

Size

Access rights
Owner

Ref counter: 3

information

L node

Mode: WR_ONLY

Offset
Ref counter:
File info:

What happens when opening the same file
multiple times?

process

Opened files table I-node table
file
: information
Mode: ? ize
Offset: 0 ccess rights | node

Ref counter: 1
File info: — |

What happens when opening the same file
multiple times?

orocess Two independent offsets!

Opened files table I-node table
file

: information
Mode: ? Size

Offset: 0 Access rights // nOde

Ref counter: 1 Owner
File info: — | Ref counter

Mode: ?
Offset: 0

Ref countey
File info:

What happens when different processes open
the same file?

process

Opened files table I-node table
file
: information
Mode: ? ize
Offset: 0 ccess rights | node

Ref counter: 1
File info: — |

0]
1
2
3
4
5
6
7

What happens when different processes open
the same file?

orocess Two independent offsets!

Opened files table I-node table
file

: information
Mode: ? Size

Offset: 0 Access rights // nOde
Ref counter: 1 Owner
File info: — | Ref counter

N OO o AN R O

Mode: ?
Offset: 0

Ref countey
File info:

Random access to files

What it we quickly need to jump to an
arbitrary position?

process

Opened files tabl I-node table
“file.txt”

: information
Mode: RD_OI‘{LY Size

Offset: 8 Access rights ~_|— node
Ref counter: 1 Owner
fiIe File info: — | Ref counter

descriptor
table

Changing current position

* Reading from the file and writing to the process memory
off t lseek(int fildes, off t offset, int whence);

* whence can be:
 SEEK SET
* SEEK_CUR
* SEEK_END

e Return value:

* Absolute offset
* Cannot be negative

Iseek (fd, 2, SEEK CUR)

process

file
descriptor
table

Opened fileié,__t le

Mode: RD_OI:‘.JILY
Offset: 6

Ref counter: 1
File info: — |

I-node table

“file.txt”

Size

Access rights
Owner

Ref counter

information

L node

[seek (fd, -3, SEEK END)

process

Opened files table I-node table
“file.txt”

: information
Mode: RD_ONLY Size

Offset: 10 —| Access rights ~_|— node
Ref counter: 1 Owner
fiIe File info: — |

descriptor
table

Ref counter

[seek

* seek.c, reverse.c

Changing current position

* Setting offset beyond end-of-file
is possible

* Remember : Iseek performs no file
access

* What happens upon read?

 What happens upon write?

offset

[seek

* create_big file.c

|/O redirections

Back to pre-opened descriptors...

int main (int argc, char *argvl|[])
{
close (STDIN FILENO);
int fd = open (“file.txt”, O RDONLY);

read (STDIN FILENO, ..);

fd = open (“file.txt”, O_RDONLY);

process

fd [3]

Opened files table I-node table

Terminal
Mode: RD_ONLY

Offset information

Size
Ref counter: 1 Access rights _— node
File info:

Owner
Ref counter

file
descriptor
table

“file.txt”
Mode: RD_ONLY Size information

Offset: 0 Access rights _— node
Ref counter: 1 Owner

File info: —— Ref counter

N OO o AN R O

At launch time

process

fd [3]

Opened files table I-node table

Terminal
Mode: RD_ONLY

Offset information

Size
Ref counter: 1
i node
File info: Access rights //

Owner
Ref counter

file
descriptor
table

N O A W N R O

close (0),

file
descriptor
table

process

@[3

X Opened files table I-node table
Terminal

: information
Size

Accessrights |- node
Owner
Ref counter

N O W N -, O

close (0); fd = open (“file.txt”, O_RDONLY),

orocess Now, read (0O, ...) reads from file.txt

So does scanf...
fd [o |

Opened files table I-node table
Terminal

: information
Size

Access rights _— node
Owner
Ref counter

file
descriptor
table

“file.txt”
: information
Mode: RD_ONLY Size

Offset: 0 Access rights _— node
Ref counter: 1 Owner
File info: —— Ref counter

N oo o A WN R O

Back to pre-opened descriptors...

int main (int argc, char *argvl|[])
{
close (STDIN FILENO);
int fd = open (“file.txt”, O RDONLY);

// From now on, standard input 1s redirected to file.txt

// ./prog < file.txt

File descriptor manipulation

* Duplicating file descriptors
* i.e. duplicating pointers in the file descriptor table

int dup (int fildes);

int dup2 (int src fd, int dst fd);

File descriptor manipulation

process fd2 = dup (fd1)

Opened files table I-node table
file

: information
Mode: ? Size

Offset: 0 Access rights // nOde
Ref counter: 1 Owner
File info: — |

Ref counter

File descriptor manipulation

process fd2 = dup (fd1)

Opened files table I-node table
file

: information
Mode: ? Size

Offset: 0 Access rights // nOde
Ref counter: 2 Owner
File info: — |

Ref counter

File descriptor manipulation

* Typical usage of dup

int fd = open (..);

close (STDOUT FILENO);
dup (£d);
close (fd);

STDOUT redirection (with dup)

process close(STDOUT_FILENO);

fd [3]

Opened files table I-node table
file

: information
Mode: WRONLY Size

Offset: 0 Access rights // nOde
Ref counter: 1 Owner
File info: — | Ref counter

N OO o AN R O

STDOUT redirection (with dup)

process close(STDOUT_FILENO); dup (fd);

fd [3]

Opened files table I-node table
file

: information
Mode: WRONLY Size

Offset: 0 Access rights // nOde
"l Ref counter: 2 Owner
File info: — | Ref counter

(@)
=
<

N OO N L O

STDOUT redirection (with dup)

process close(STDOUT_FILENO); dup (fd); close(fd);

fd [3]

Opened files table I-node table
file

: information
Mode: WRONLY Size

Offset: 0 Access rights // nOde
Ref counter: 1 Owner
File info: — | Ref counter

N O o W N -, O

File descriptor manipulation

* Typical usage of dup

int fd = open (..);

close (STDOUT FILENO);
dup (£d);
close (fd);

File descriptor manipulation

* We need a safer way to select the target descriptor

int fd = open (..);

dup2 (fd, STDOUT FILENO) ;

close (fd) ;

STDOUT redirection (with dup?2)

orocess dup2 (fd, STDOUT_FILENO);

Opened files table I-node table
file

: information
Mode: WRONLY Size

Offset: 0 Access rights // nOde
Ref counter: 1 Owner
File info: — |

Ref counter

STDOUT redirection (with dup?2)

orocess dup2 (fd, STDOUT_FILENO);

Opened files table I-node table
file

: information
Mode: WRONLY Size

Offset: 0 Access rights // nOde
"l Ref counter: 2 Owner
File info: — |

Ref counter

STDOUT redirection (with dup?2)

process dup2 (fd, STDOUT_FILENO); close (fd);

Opened files table I-node table
file

: information
Mode: WRONLY Size

Offset: 0 Access rights // nOde
Ref counter: 1 Owner
File info: — |

Ref counter

C standard file API

* Files are manipulated through FILE* handlers (# file descriptor)
* FILE* fopen (...)
e fread (..., FILE *f), fwrite (..., FILE *f), fprintf (FILE *f, ...), fscanf (FILE *f, ...), ...
* extern FILE *stdin, *stdout, *stderr;

* Implemented in user mode (libc)
* fopen relies on open
 fread relies on read
* Etc.

C standard file API

 One could think that these
routines introduce overhead

e But libc routines are usually
(much) faster!

e Reason?

* The FILE struct contains a buffer
 1KB ~ 8KB

* Read operations use prefetching
* Write operation use buffering

C standard file API

* Read prefetching

* The first fread prefetches BUFSIZE
bytes (if possible) using read

* Next fread operations simply copy
from buffer to destination

* As a result

* fcopy performs
a lot less system calls
than copy

C standard file API

* Write buffering

* fwrite copies data into buffer

 When the buffer is full, it gets
flushed to the kernel (write)

 Special buffering policies
e stderr is unbuffered

 stdout is line buffered
* printf (“hello”) vs printf (“hello\n”)
e fflush (FILE *f)

Allez sur wooclap.com et utilisez le code PSFOREVER e

printf("Hello\nWorld\n"); provoque

Aucun appel systéme : les données sont juste stockées dans un tampon

Lt Résultats . o
-me a write

©

Deux appels systeme a write

printf est un appel systéme au méme titre que write, donc cela ne provoque pas d'appel
supplémentaire

wooclap 64 /192 :&

Memory-mapped files

* Accessing files as if they were in memory ?

Code, data, etc.

Memory-mapped files

* Accessing files as if they were in memory ? It is called: file ma

#define BUFSIZE 4

char xfilename = "int.bin";
void ecrire (int fd)

{

int i=31;
write (fd, &1, sizeof(int));

ot main (int argc, char ¥argv(])
if (arge > 1)

filename = argv[1];

int fd = open (filename, 0

WRONLY | O_CREAT, 0666);
check_syscall

(fd, “Cannot open %s file", filename);
ecrire (fd);
close (fd);

return 0;

#define BUFSIZE 4

char *filename = "int.bin";

void ecrire (int fd)
{

int i = 31;
write (fd, &1, sizeof(int));

}

Code, data, etc.

if (argc > 1)
filename = argv[1];

int fd = open (filename, 0

WRONLY | O_CREAT, 0666);
check_syscall (fd, “Cannot open %s file", filename);

ecrire (fd);

close (fd);

return 0;

Memory-mapped files

* Accessing files as if they were in memory ? It’s called file mapping
* Processes can map a (portion of a) file in their address space

void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);

/ / /

Suggested address access mode file
(or NULL)

* Example:

char xaddr = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

Memory-mapped files

* Accessing files as if they were in memory ? It’s called file mapping
* Processes can map a (portion of a) file in their address space

int fd = open ("file.txt", O_RDWR);
off t len = lseek (fd, @, SEEK END);

char *xregion = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

e Then, file contents can be accessed as an array

strcpy (region, '"Hello World!");

* mmap takes a file
descriptor as a
parameter

Kernel
memory

YN
N

* (Part of) file.txt is
loaded into kernel
memory

e Acts as a cache:

 All read/write operations
go through the cache

N~

updates

* Disk file will be
automatically updated...

Kernel
memory

YN
N

* Kernel cache is mapped
directly in process’
address space

updates * No memory allocation
region — * Purely virtual

N~

* CPU “move” operations
directly operate on the
kernel cache

Kernel
memory

YN
N

* In fact, file mapping is
the most efficient way
to cope with non-

indates growing files

region —» * Direct memory access

N~

* No system calls!

 See reverse.c, toupper.c

Kernel
memory

YN
N

N~

updates

region —»

Kernel
memory

Communication between processes

* Processes which map the
same file do share physical
memory!

* Modifications are “instantly”
seen by other processes

Communication between processes

e Caution
* File may not be mapped at
the same virtual address!

* Shared data structures should
not contain pointers...

* File may not be mapped at
the same virtual address!

* Shared data structures should
not contain pointers...

* See server.c + client.c

Communication between processes

e Caution

* No synchronization

* Need another mechanism to
notify completion of an
update...

Additional resources
available on

http://gforgeron.gitlab.io/progsys/

