
System Programming:
File Management

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

1

https://gforgeron.gitlab.io/progsys/

The concept of File

• A central concept in Unix
• “All is File” philosophy

• Regular disk files, but also
• Terminal
• Devices (mouse, keyboard)
• Network sockets
• Etc.

• User view of a Disk File
• Contiguous series of bytes
• Known length, but may expand/shrink dynamically
• Access rights (rwx)
• Can be referenced by multiple links (paths)

2

Two File Management APIs

- 3

KERNEL
(process scheduling, memory management, I/O)

Hardware

API: system calls

process process process process process

libc
File API

kernel
File API1

2

The concept of File

• Before we can read from/write into a file, we must open it
• Why can’t we just read directly ?

• read (“/net/cremi/dupont/myfile.txt”, buffer1, …)
• read (“/net/cremi/dupont/myfile.txt”, buffer2, …)
• …

4

The concept of File

• Before we can read from/write into a file, we must open it
• Why can’t we just read directly ?

• read (“/net/cremi/dupont/myfile.txt”, buffer1, …)
• read (“/net/cremi/dupont/myfile.txt”, buffer2, …)
• …

• Partly for efficiency reasons
• To access file “/net/cremi/dupont/myfile.txt”, the OS must check

• That there is a “net” entry in the “/” directory
• That ”/net” is a directory and that the user can traverse it (x)
• That there is a “cremi” entry in the ”/net” directory
• That “/net/cremi” is a directory and that the user can traverse it (x)
• …
• That “/net/cremi/dupont/myfile.txt” is a file and that the user can read it (r)

5

Opening Files

• Before we can read from/write into a file, we must open it

int open(const char *path, int oflag, ...);

• Open performs the appropriate checks, and returns a file descriptor
• This file descriptor is a key which will

• Accelerate upcoming read/write operations
• Maintain the “current position” in the file

6

Opening Files

• Before we can read from/write into a file, we must open it

int open(const char *path, int oflag, ...);

• Open performs the appropriate checks, and returns a file descriptor
• This file descriptor is a key which will

• Accelerate upcoming read/write operations
• Maintain the “current position” in the file

• oflag:
• O_RDONLY, O_WRONLY or O_RDWR
• Optional: O_CREAT, O_TRUNC, O_SYNC, etc.

• When a file is created, the third parameter sets access rights (octal notation)
• 0750 = 111 101 000 = rwxr-x---
• 0666 = 110 110 110 = rw-rw-rw-

7

Opening Files

• See ouverture.c…

8

Side note about process representation

- 9

P0

Processes can be
represented this way:

Kernel
space

attributes

Side note about process representation

- 10

KERNEL

P0 P1

Process
list

P0

Processes can be
represented this way:

Kernel
space

attributes

But reality is (obviously) more like:

Kernel
space

attributes

fd = open (“file.txt”, O_RDONLY);

- 11

process

fd

fd = open (“file.txt”, O_RDONLY);

- 12

process

fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node table

fd = open (“file.txt”, O_RDONLY);

- 13

process

fd

Size
Access rights
Owner
Ref counter

I-node tableOpened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

“file.txt”
information

node

fd = open (“file.txt”, O_RDONLY);

- 14

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

fd = open (“file.txt”, O_RDONLY);

- 15

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

From now on, read and write operations will use 3
as a descriptor identifying the opened record

fd = open (“file.txt”, O_RDONLY);

- 16

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size: 13
Access rights: rw-
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

Reading from a File

• Reading from the file and writing to process memory
ssize_t read(int fildes, void *buf, size_t nbyte);

• Return value:
• -1 if error
• Number of bytes read (and copied to buf)

• If zero, then we have reached the End Of File

17

Reading from a File

• See lecture.c

18

read (fd, buffer, 4)

- 19

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 4
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

Writing into a File

• Reading from memory and writing to the file
ssize_t write(int fildes, void *buf, size_t nbyte);

• Return value:
• -1 if error
• Number of bytes written

• Can be less than nbyte…

• Writing beyond end-of-file automatically extends the file

20

fd = open (“file.txt”, O_WRONLY | O_CREAT, 0666);

- 21

process

0

1
2

3

4

5

6

7

…

3fd

Size: 13
Access rights: rw-
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: WR_ONLY
Offset: 0
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

write (fd, “Bonjour”, 7);

- 22

process

0

1
2

3

4

5

6

7

…

3fd

Size: 13
Access rights: rw-
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: WR_ONLY
Offset: 7
Ref counter: 1
File info:

j uon roB o ! \ndlr

Writing into a File

• See ecriture.c

23

Take away of previous lecture

- 24

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Opened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

Coping with structured data

• How to store integers into a file?
• Say we have a function that generates a series of integers

• There are several ways
• Ascii representation
• Raw integers

25

Coping with structured data

• Writing the ascii representation into a File
• Convert integer into string

• E.g. using sprintf
• Write string to file

• Think about a separator…

• Pros
• Readable like a text file
• Portable

• Cons

26

Coping with structured data

• Writing the ascii representation into a File
• Convert integer into string

• E.g. using sprintf
• Write string to file

• Think about a separator…

• Pros
• Readable like a text file
• Portable

• Cons
• Reading back the file

• Finding separators
• Convert string back to integer

• No efficient (direct) access to the Nth integer

27

Coping with structured data

• Writing the binary representation into a File
• int i = …; write (fd, &i, sizeof(int));

• Pros
• Performance of both read/write operations
• Efficient (direct) access to the Nth integer

• Index files

• Cons

28

Coping with structured data

• Writing the binary representation into a File
• int i = …; write (fd, &i, sizeof(int));

• Pros
• Performance of both read/write operations
• Efficient (direct) access to the Nth integer

• Index files

• Cons
• File readability

• Hexdump J
• Portability

• Only works if file is generated AND accessed on the same processor architecture

29

Pre-opened descriptors

• Standard input/output
• E.g. Terminal

• 0: STDIN_FILENO
• 1: STDOUT_FILENO
• 2: STDERR_FILENO

- 30

process

0

1
2

3

4

5

6

7

…

Pre-opened descriptors

- 31

process

0

1
2

3

4

5

6

7

…

Size
Access rights
Owner
Ref counter: 3

Terminal
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset
Ref counter: 1
File info:

Mode: WR_ONLY
Offset
Ref counter: 1
File info:

Mode: WR_ONLY
Offset
Ref counter: 1
File info:

What happens when opening the same file
multiple times?

- 32

process

0

1
2

3

4

5

6

7

…

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 1
File info:

What happens when opening the same file
multiple times?

- 33

process

0

1
2

3

4

5

6

7

…

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 1
File info:

4fd2

Mode: ?
Offset: 0
Ref counter: 1
File info:

Two independent offsets!

What happens when different processes open
the same file?

- 34

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 1
File info:

process

0

1
2

3

4

5

6

7

…

What happens when different processes open
the same file?

- 35

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 1
File info:

Mode: ?
Offset: 0
Ref counter: 1
File info:

Two independent offsets!process

0

1
2

3

4

5

6

7

…

36

Random access to files

37

What if we quickly need to jump to an
arbitrary position?

- 38

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 8
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

?

Changing current position

• Reading from the file and writing to the process memory
off_t lseek(int fildes, off_t offset, int whence);

• whence can be:
• SEEK_SET
• SEEK_CUR
• SEEK_END

• Return value:
• Absolute offset

• Cannot be negative

39

lseek (fd, 2, SEEK_CUR)

- 40

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 6
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

lseek (fd, -3, SEEK_END)

- 41

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 10
Ref counter: 1
File info:

l \nol WeH o ! \ndlr

lseek

• seek.c, reverse.c

42

Changing current position

• Setting offset beyond end-of-file
is possible
• Remember : lseek performs no file

access

• What happens upon read?

• What happens upon write?

43

l \noleH

offset

lseek

• create_big_file.c

44

I/O redirections

45

Back to pre-opened descriptors…

int main (int argc, char *argv[])

{

 close (STDIN_FILENO);

 int fd = open (“file.txt”, O_RDONLY);

 …

 read (STDIN_FILENO, …); // What happens?

 …

}

46

fd = open (“file.txt”, O_RDONLY);

- 47

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

Size
Access rights
Owner
Ref counter

Terminal
information

node

Mode: RD_ONLY
Offset
Ref counter: 1
File info:

At launch time

- 48

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

I-node tableOpened files table

Size
Access rights
Owner
Ref counter

Terminal
information

node

Mode: RD_ONLY
Offset
Ref counter: 1
File info:

close (0);

- 49

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3fd

I-node tableOpened files table

Size
Access rights
Owner
Ref counter

Terminal
information

node

close (0); fd = open (“file.txt”, O_RDONLY);

- 50

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

0fd

Size
Access rights
Owner
Ref counter

“file.txt”
information

node

I-node tableOpened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

Size
Access rights
Owner
Ref counter

Terminal
information

node

Now, read (0, …) reads from file.txt
So does scanf…

Back to pre-opened descriptors…

int main (int argc, char *argv[])

{

 close (STDIN_FILENO);

 int fd = open (“file.txt”, O_RDONLY);

 …

 // From now on, standard input is redirected to file.txt

 // ./prog < file.txt

 …

}

51

File descriptor manipulation

• Duplicating file descriptors
• i.e. duplicating pointers in the file descriptor table

int dup (int fildes);

int dup2 (int src_fd, int dst_fd);

52

File descriptor manipulation

- 53

process

0

1
2

3

4

5

6

7

…

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 1
File info:

fd2

fd2 = dup (fd1)

File descriptor manipulation

- 54

process

0

1
2

3

4

5

6

7

…

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 2
File info:

5fd2

fd2 = dup (fd1)

File descriptor manipulation

• Typical usage of dup

int fd = open (…);
…
close (STDOUT_FILENO);
dup (fd);
close (fd);

55

STDOUT redirection (with dup)

- 56

process

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: WRONLY
Offset: 0
Ref counter: 1
File info:

close(STDOUT_FILENO);

STDOUT redirection (with dup)

- 57

process

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: WRONLY
Offset: 0
Ref counter: 2
File info:

close(STDOUT_FILENO); dup (fd);

copy

STDOUT redirection (with dup)

- 58

process

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: WRONLY
Offset: 0
Ref counter: 1
File info:

close(STDOUT_FILENO); dup (fd); close(fd);

File descriptor manipulation

• Typical usage of dup

int fd = open (…);

… // what if STDIN_FILENO is closed here?

close (STDOUT_FILENO);
dup (fd);
close (fd);

59

File descriptor manipulation

• We need a safer way to select the target descriptor

int fd = open (…);
…
dup2 (fd, STDOUT_FILENO);
// STDOUT is automatically closed
// before fd is copied
close (fd);

60

STDOUT redirection (with dup2)

- 61

process

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: WRONLY
Offset: 0
Ref counter: 1
File info:

dup2 (fd, STDOUT_FILENO);

STDOUT redirection (with dup2)

- 62

process

0

1
2

3

4

5

6

7

…

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: WRONLY
Offset: 0
Ref counter: 2
File info:

dup2 (fd, STDOUT_FILENO);

✗copy

STDOUT redirection (with dup2)

- 63

process

0

1
2

3

4

5

6

7

…

3fd

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: WRONLY
Offset: 0
Ref counter: 1
File info:

dup2 (fd, STDOUT_FILENO); close (fd);

C standard file API

• Files are manipulated through FILE* handlers (≠ file descriptor)
• FILE* fopen (…)
• fread (…, FILE *f), fwrite (…, FILE *f), fprintf (FILE *f, …), fscanf (FILE *f, …), …
• extern FILE *stdin, *stdout, *stderr;

• Implemented in user mode (libc)
• fopen relies on open
• fread relies on read
• Etc.

64

C standard file API

• One could think that these
routines introduce overhead
• But libc routines are usually

(much) faster!

• Reason?
• The FILE struct contains a buffer

• 1KB ~ 8KB

• Read operations use prefetching
• Write operation use buffering

65

0

1
2

3

4

5

6

7

…

3fd

FILE

buffer

C standard file API

• Read prefetching
• The first fread prefetches BUFSIZE

bytes (if possible) using read
• Next fread operations simply copy

from buffer to destination

• As a result
• fcopy performs

a lot less system calls
than copy

66

0

1
2

3

4

5

6

7

…

3fd

FILE

buffer

C standard file API

• Write buffering
• fwrite copies data into buffer
• When the buffer is full, it gets

flushed to the kernel (write)

• Special buffering policies
• stderr is unbuffered
• stdout is line buffered

• printf (“hello”) vs printf (“hello\n”)
• fflush (FILE *f)

67

0

1
2

3

4

5

6

7

…

3fd

FILE

buffer

68

Memory-mapped files

• Accessing files as if they were in memory ?

69

Disk

file.txt

User
space

Code, data, etc.

Memory-mapped files

• Accessing files as if they were in memory ? It is called: file mapping

70

Disk

file.txt

User
space

ptr

Code, data, etc.

Memory-mapped files

• Accessing files as if they were in memory ? It’s called file mapping
• Processes can map a (portion of a) file in their address space

void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);

• Example:

 char *addr = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

71

fileaccess modeSuggested address
(or NULL)

Memory-mapped files

• Accessing files as if they were in memory ? It’s called file mapping
• Processes can map a (portion of a) file in their address space

int fd = open ("file.txt", O_RDWR);

off_t len = lseek (fd, 0, SEEK_END);

char *region = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

• Then, file contents can be accessed as an array

strcpy (region, "Hello World!");

72

mmap

• mmap takes a file
descriptor as a
parameter

73

Code

Data

Heap

Stack

User
space

Kernel
memory

Disk

file.txt

mmap

• (Part of) file.txt is
loaded into kernel
memory
• Acts as a cache:

• All read/write operations
go through the cache

• Disk file will be
automatically updated…

74

Code

Data

Heap

Stack

User
space

Kernel
memory

file.txt cache

Disk

updates

file.txt

mmap

• Kernel cache is mapped
directly in process’
address space
• No memory allocation

• Purely virtual

• CPU “move” operations
directly operate on the
kernel cache

75

Code

Data

Heap

Stack

User
space

Kernel
memory

file.txt cache

region

Disk

updates

file.txt

mmap

• In fact, file mapping is
the most efficient way
to cope with non-
growing files
• Direct memory access
• No system calls!

• See reverse.c, toupper.c

76

Code

Data

Heap

Stack

User
space

Kernel
memory

file.txt cache

region

Disk

updates

file.txt

mmap

77

Code

Data

Heap

Stack

User
space

Kernel
memory

file.txt cache

region

Disk

updates

file.txt

Code

Data

Heap

Stack

User
space

ptr

Communication between processes

78

Code

Data

Heap

Stack

slowtoupper

o
l
l
e
H

ptr1

Code

Data

Heap

Stack

monitor

o
l
l
e
H

• Processes which map the
same file do share physical
memory!
• Modifications are “instantly”

seen by other processes

ptr2

Communication between processes

79

Code

Data

Heap

Stack

o
l
l
e
H

ptr1

Code

Data

Heap

Stack

o
l
l
e
H

• Caution
• File may not be mapped at

the same virtual address!
• Shared data structures should

not contain pointers…

ptr2

Communication between processes

80

Code

Data

Heap

o
l
l
e
H

ptr1

Code

Data

Heap

• Caution
• File may not be mapped at

the same virtual address!
• Shared data structures should

not contain pointers…

• See server.c + client.c

ptr2

O
l
a

o
l
l
e
H

O
l
a

Communication between processes

81

Code

Data

Heap

Stack

o
l
l
e
H

ptr1

Code

Data

Heap

Stack

o
l
l
e
H

• Caution
• No synchronization

• Need another mechanism to
notify completion of an
update…

ptr2

Additional resources
available on

http://gforgeron.gitlab.io/progsys/

82

http://gforgeron.gitlab.io/progsys/

