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The concept of File

• A central concept in Unix
• “All is File” philosophy

• Regular disk files, but also
• Terminal
• Devices (mouse, keyboard)
• Network sockets
• Etc.

• User view of a Disk File
• Contiguous series of bytes
• Known length, but  may expand/shrink dynamically
• Access rights (rwx)
• Can be referenced by multiple links (paths)
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Two File Management APIs
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KERNEL
(process scheduling, memory management, I/O)

Hardware

API: system calls

process process process process process

libc 
File API

kernel 
File API1
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The concept of File

• Before we can read from/write into a file, we must open it
• Why can’t we just read directly ?

• read (“/net/cremi/dupont/myfile.txt”, buffer1, …)
• read (“/net/cremi/dupont/myfile.txt”, buffer2, …)
• …
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The concept of File

• Before we can read from/write into a file, we must open it
• Why can’t we just read directly ?

• read (“/net/cremi/dupont/myfile.txt”, buffer1, …)
• read (“/net/cremi/dupont/myfile.txt”, buffer2, …)
• …

• Partly for efficiency reasons
• To access file “/net/cremi/dupont/myfile.txt”, the OS must check

• That there is a “net” entry in the “/” directory
• That ”/net” is a directory and that the user can traverse it (x)
• That there is a “cremi” entry in the ”/net” directory
• That “/net/cremi” is a directory and that the user can traverse it (x)
• …
• That “/net/cremi/dupont/myfile.txt” is a file and that the user can read it (r)
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Opening Files

• Before we can read from/write into a file, we must open it

int open(const char *path, int oflag, ...);

• Open performs the appropriate checks, and returns a file descriptor
• This file descriptor is a key which will

• Accelerate upcoming read/write operations
• Maintain the “current position” in the file
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Opening Files

• Before we can read from/write into a file, we must open it

int open(const char *path, int oflag, ...);

• Open performs the appropriate checks, and returns a file descriptor
• This file descriptor is a key which will

• Accelerate upcoming read/write operations
• Maintain the “current position” in the file

• oflag:
• O_RDONLY, O_WRONLY or O_RDWR
• Optional: O_CREAT, O_TRUNC, O_SYNC, etc.

• When a file is created, the third parameter sets access rights (octal notation)
• 0750 = 111 101 000 = rwxr-x---
• 0666 = 110 110 110 = rw-rw-rw-
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Opening Files

• See ouverture.c…
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Side note about process representation
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Processes can be
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space
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Side note about process representation
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KERNEL

P0 P1

Process
list

P0

Processes can be
represented this way:

Kernel
space

attributes

But reality is (obviously) more like:

Kernel
space

attributes



fd = open (“file.txt”, O_RDONLY);
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fd = open (“file.txt”, O_RDONLY);
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fd = open (“file.txt”, O_RDONLY);
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fd = open (“file.txt”, O_RDONLY);
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fd = open (“file.txt”, O_RDONLY);
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fd = open (“file.txt”, O_RDONLY);
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Reading from a File

• Reading from the file and writing to process memory
ssize_t read(int fildes, void *buf, size_t nbyte);

• Return value:
• -1 if error
• Number of bytes read (and copied to buf)

• If zero, then we have reached the End Of File
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Reading from a File

• See lecture.c
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read (fd, buffer, 4)
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Writing into a File

• Reading from memory and writing to the file
ssize_t write(int fildes, void *buf, size_t nbyte);

• Return value:
• -1 if error
• Number of bytes written

• Can be less than nbyte…

• Writing beyond end-of-file automatically extends the file
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fd = open (“file.txt”, O_WRONLY | O_CREAT, 0666);
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write (fd, “Bonjour”, 7);
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Writing into a File

• See ecriture.c
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Take away of previous lecture
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Coping with structured data

• How to store integers into a file?
• Say we have a function that generates a series of integers

• There are several ways
• Ascii representation
• Raw integers
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Coping with structured data

• Writing the ascii representation into a File
• Convert integer into string

• E.g. using sprintf
• Write string to file

• Think about a separator…

• Pros
• Readable like a text file
• Portable

• Cons
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Coping with structured data

• Writing the ascii representation into a File
• Convert integer into string

• E.g. using sprintf
• Write string to file

• Think about a separator…

• Pros
• Readable like a text file
• Portable

• Cons
• Reading back the file

• Finding separators
• Convert string back to integer

• No efficient (direct) access to the Nth integer
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Coping with structured data

• Writing the binary representation into a File
• int i = …; write (fd, &i, sizeof(int));

• Pros
• Performance of both read/write operations
• Efficient (direct) access to the Nth integer

• Index files

• Cons
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Coping with structured data

• Writing the binary representation into a File
• int i = …; write (fd, &i, sizeof(int));

• Pros
• Performance of both read/write operations
• Efficient (direct) access to the Nth integer

• Index files

• Cons
• File readability

• Hexdump J
• Portability

• Only works if file is generated AND accessed on the same processor architecture
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Pre-opened descriptors

• Standard input/output
• E.g. Terminal

• 0: STDIN_FILENO
• 1: STDOUT_FILENO
• 2: STDERR_FILENO
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Pre-opened descriptors
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What happens when opening the same file 
multiple times?

- 32

process

0

1
2

3

4

5

6

7

…

3fd1

Size
Access rights
Owner
Ref counter

file
information

node

I-node tableOpened files table

Mode: ?
Offset: 0
Ref counter: 1
File info: 



What happens when opening the same file 
multiple times?
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What happens when different processes open
the same file?
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What happens when different processes open
the same file?
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Random access to files
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What if we quickly need to jump to an 
arbitrary position?
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Changing current position

• Reading from the file and writing to the process memory
off_t lseek(int fildes, off_t offset, int whence);

• whence can be:
• SEEK_SET
• SEEK_CUR
• SEEK_END

• Return value:
• Absolute offset

• Cannot be negative
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lseek (fd,  2, SEEK_CUR)
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lseek (fd,  -3, SEEK_END)
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lseek

• seek.c, reverse.c
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Changing current position

• Setting offset beyond end-of-file 
is possible
• Remember : lseek performs no file 

access

• What happens upon read?

• What happens upon write?
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lseek

• create_big_file.c
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I/O redirections
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Back to pre-opened descriptors…

int main (int argc, char *argv[])

{

  close (STDIN_FILENO);

  int fd = open (“file.txt”, O_RDONLY);

  …

  read (STDIN_FILENO, …);  // What happens?

  …

}

46



fd = open (“file.txt”, O_RDONLY);
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At launch time
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close (0);
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close (0); fd = open (“file.txt”, O_RDONLY);
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Back to pre-opened descriptors…

int main (int argc, char *argv[])

{

  close (STDIN_FILENO);

  int fd = open (“file.txt”, O_RDONLY);

  …

  // From now on, standard input is redirected to file.txt

  // ./prog < file.txt

  …

}
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File descriptor manipulation

• Duplicating file descriptors
• i.e. duplicating pointers in the file descriptor table

int dup (int fildes);

int dup2 (int src_fd, int dst_fd);
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File descriptor manipulation
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File descriptor manipulation
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File descriptor manipulation

• Typical usage of dup

int fd = open (…);
…
close (STDOUT_FILENO);
dup (fd);
close (fd);
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STDOUT redirection (with dup)
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STDOUT redirection (with dup)
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STDOUT redirection (with dup)
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File descriptor manipulation

• Typical usage of dup

int fd = open (…);

… // what if STDIN_FILENO is closed here?

close (STDOUT_FILENO);
dup (fd);
close (fd);
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File descriptor manipulation

• We need a safer way to select the target descriptor

int fd = open (…);
…
dup2 (fd, STDOUT_FILENO);
// STDOUT is automatically closed
// before fd is copied
close (fd);
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STDOUT redirection (with dup2)
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STDOUT redirection (with dup2)
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STDOUT redirection (with dup2)
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C standard file API

• Files are manipulated through FILE* handlers (≠ file descriptor)
• FILE* fopen (…)
• fread (…, FILE *f), fwrite (…, FILE *f), fprintf (FILE *f, …), fscanf (FILE *f, …), …
• extern FILE *stdin, *stdout, *stderr;

• Implemented in user mode (libc)
• fopen relies on open
• fread relies on read
• Etc.
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C standard file API

• One could think that these 
routines introduce overhead
• But libc routines are usually 

(much) faster!

• Reason?
• The FILE struct contains a buffer

• 1KB ~ 8KB

• Read operations use prefetching
• Write operation use buffering
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C standard file API

• Read prefetching
• The first fread prefetches BUFSIZE 

bytes (if possible) using read
• Next fread operations simply copy 

from buffer to destination

• As a result
• fcopy performs

a lot less system calls
than copy

66

0

1
2

3

4

5

6

7

…

3fd

FILE

buffer



C standard file API

• Write buffering
• fwrite  copies data into buffer
• When the buffer is full, it gets 

flushed to the kernel (write)

• Special buffering policies
• stderr is unbuffered
• stdout is line buffered

• printf (“hello”) vs printf (“hello\n”)
• fflush (FILE *f)
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Memory-mapped files

• Accessing files as if they were in memory ? 
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Memory-mapped files

• Accessing files as if they were in memory ? It is called: file mapping
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Memory-mapped files

• Accessing files as if they were in memory ? It’s called file mapping
• Processes can map a (portion of a) file in their address space

void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);

• Example:

   char *addr = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
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Memory-mapped files

• Accessing files as if they were in memory ? It’s called file mapping
• Processes can map a (portion of a) file in their address space

int fd = open ("file.txt", O_RDWR);

off_t len = lseek (fd, 0, SEEK_END);

char *region = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

• Then, file contents can be accessed as an array

strcpy (region, "Hello World!");
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mmap

• mmap takes a file 
descriptor as a 
parameter
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mmap

• (Part of) file.txt is 
loaded into kernel 
memory
• Acts as a cache:

• All read/write operations 
go through the cache

• Disk file will be 
automatically updated…
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mmap

• Kernel cache is mapped 
directly in process’ 
address space
• No memory allocation

• Purely virtual

• CPU “move” operations 
directly operate on the 
kernel cache
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mmap

• In fact, file mapping is 
the most efficient way 
to cope with non-
growing files
• Direct memory access
• No system calls!

• See reverse.c, toupper.c
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mmap
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Communication between processes
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Communication between processes
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Communication between processes
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Communication between processes
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• Caution
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Additional resources
available on

http://gforgeron.gitlab.io/progsys/

82

http://gforgeron.gitlab.io/progsys/

