
System Programming:
Process Management

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

1

https://gforgeron.gitlab.io/progsys/

Processes

• Processes are lively instances of programs
• Program = binary code stored on disk
• Multiple processes can run the same program independently

2

Processes

• Processes are lively instances of programs
• Program = binary code stored on disk
• Multiple processes can run the same program independently

• Process = Address Space + Execution Context
• Address space

3

Processes

• Processes are lively instances of programs
• Program = binary code stored on disk
• Multiple processes can run the same program independently

• Process = Address Space + Execution Context
• Address space

• Set of visible memory addresses
• Code, Data, Heap, Stack, Shared Libraries, etc.

• Execution Context

4

Processes

• Processes are lively instances of programs
• Program = binary code stored on disk
• Multiple processes can run the same program independently

• Process = Address Space + Execution Context
• Address space

• Set of visible memory addresses
• Code, Data, Heap, Stack, Shared Libraries, etc.

• Execution Context
• Stack + content of processor registers

5

Address Space

• Typically composed of non-
contiguous memory regions
• A region being a contiguous range

of valid addresses

6

Address Space

• Typically composed of the
following regions
• Code

• (aka text segment)
• Contains executable instructions
• Usually a read-only region

7

Code

Address Space

• Typically composed of the
following regions
• Code
• Data

• Allocation of static variables
• int i;

8

Code

Data

Address Space

• Typically composed of the
following regions
• Code
• Data

• Allocation of static variables
• Actually two segments

• Initialized data (data segment)
• float pi = 3.1415;
• Stored in object file

• Uninitialized data (bss segment)
• int i;
• Only segment size is stored in

object file

9

Code

data

bss

Address Space

• Typically composed of the
following regions
• Code
• Data
• Stack

• Allocation of function parameters
and local variables

• Automatic growth
• 8 MiB default limit under Linux

10

Stack

Code

Data

Address Space

• Typically composed of the
following regions
• Code
• Data
• Stack
• Heap

• Dynamic allocations
• malloc/free

• Managed by libc
• Dynamic expansion
• Note: OS cannot always detect

accesses outside malloc’ed buffers…

11

Code

Data

Heap

Stack

Address Space

• Typically composed of the
following regions
• Code
• Data
• Stack
• Heap
• Shared Libraries

• libc, libm, libGL, etc.
• Mapped on demand

12

Stack

Code

Data

Heap

Libs

Address Space

• Typically composed of the
following regions
• Code
• Data
• Stack
• Heap
• Shared Libraries

• What do these placeholder
contain?

13

Stack

Code

Data

Heap

Libs

?

Address Space

• Typically composed of the
following regions
• Code
• Data
• Stack
• Heap
• Shared Libraries

• Attempt to access memory at an
invalid address leads to a
Segmentation Fault

14

Stack

Code

Data

Heap

Libs

Invalid addresses

Process Context

• In addition to Address Space
description, the kernel stores the
following information about
each process:
• Process ID (pid) -> see getpid()
• Priority
• User ID (real/effective)
• File descriptor table
• Space for registers backup
• Etc.

- 15

firefox

Kernel
space

attributes

Reminder about process representation

- 16

KERNEL

firefox bash

Process
list

firefox

Processes can be
represented this way:

Kernel
space

attributes

But reality is (obviously) more like:

Kernel
space

attributes

Process Identity

int main(int argc, char *argv[])

{

 printf (“Hello from %d\n”,

 getpid());

}

[mymachine] ./getpid

Hello from 38043

[mymachine]

17

Process Identity

int main(int argc, char *argv[])

{

 printf (“Hello from %d\n”,

 getpid());

}

[mymachine] ./getpid

Hello from 38043

[mymachine] ./getpid &

[1] 38044

[mymachine] Hello from 38044

18

Process Creation

• One system call
• pid_t fork ();

• Fork clones the calling process
• The whole address space is copied
• Right after fork, father & child see the same values

• But they don’t share any memory

• Fork returns
• On father’s side: the pid of the newborn process
• On child’s side: 0

19

Process Creation

int main(int argc, char *argv[])

{

 fork ();

 printf (“Hello from %d\n”,

 getpid());

}

// see first-fork.c

20

Process Creation

int main(int argc, char *argv[])

{

 fork ();

 printf (“Hello from %d\n”,

 getpid());

}

// see first-fork.c

[mymachine] ./fork

Hello from 33440

Hello from 33441

[mymachine]

21

Process Creation

int main(int argc, char *argv[])

{

 fork (); fork();

 printf (“Hello from %d\n”,

 getpid());

}

22

Process Creation

int main(int argc, char *argv[])

{

 fork (); fork();

 printf (“Hello from %d\n”,

 getpid());

}

[mymachine] ./fork

Hello from 33463

Hello from 33465

Hello from 33464

[mymachine] Hello from 33466

23

Process Creation

• Return value: fork.c

24

Process Creation:
fork() replicates the whole bubble!

25

0

1
2

3

4

…
Stack

Code
Data
Heap

Libs

0

1
2

3

4

…

Stack

Code
Data
Heap

Libs

fork() ≈ replicate

Process Creation

• Global variables: vars-n-fork.c

26

Multiple fork() calls
int main (int argc, char *argv[])

{

pid_t pid[2];

pid[0] = fork ();

if (pid[0]) { // father

pprintf ("Parent's fork return value: %d\n", pid[0]);

pid[1] = fork ();

if (pid[1]) // father

pprintf ("Parent's fork return value: %d\n", pid[1]);

else // Child

pprintf ("Child's fork return value: %d\n", pid[1]);

} else // Child

pprintf ("Child's fork return value: %d\n", pid[0]);

return 0;

}

27

Multiple fork() calls
int main (int argc, char *argv[])

{

pid_t pid[2];

pid[0] = fork ();

if (pid[0]) { // father

pprintf ("Parent's fork return value: %d\n", pid[0]);

pid[1] = fork ();

if (pid[1]) // father

pprintf ("Parent's fork return value: %d\n", pid[1]);

else // Child

pprintf ("Child's fork return value: %d\n", pid[1]);

} else // Child

pprintf ("Child's fork return value: %d\n", pid[0]);

return 0;

}

[mymachine] ./forkfork

[PID 27212] Parent's fork return value: 27213

[PID 27212] Parent's fork return value: 27214

[PID 27213] Child's fork return value: 0

[PID 27214] Child's fork return value: 0

28

27212

27213 27214

Multiple fork() calls
int main (int argc, char *argv[])

{

pid_t pid[2];

pid[0] = fork ();

if (pid[0]) { // father

pprintf ("Parent's fork return value: %d\n", pid[0]);

} else { // Child

pprintf ("Child's fork return value: %d\n", pid[0]);

pid[1] = fork ();

if (pid[1]) // father

pprintf ("Parent's fork return value: %d\n", pid[1]);

else // Child

pprintf ("Child's fork return value: %d\n", pid[1]);

}
return 0;

}

29

Multiple fork() calls
int main (int argc, char *argv[])

{

pid_t pid[2];

pid[0] = fork ();

if (pid[0]) { // father

pprintf ("Parent's fork return value: %d\n", pid[0]);

} else { // Child

pprintf ("Child's fork return value: %d\n", pid[0]);

pid[1] = fork ();

if (pid[1]) // father

pprintf ("Parent's fork return value: %d\n", pid[1]);

else // Child

pprintf ("Child's fork return value: %d\n", pid[1]);

}
return 0;

}

[mymachine] ./forkfork

[PID 27588] Parent's fork return value: 27589

[PID 27589] Child's fork return value: 0

[PID 27589] Parent's fork return value: 27590

[mymachine] [PID 27590] Child's fork return value: 0

30

27588

27590

27589

31

Process Creation:
fork() replicates the whole bubble!
• The following program does not

produce the output you might
expect…

int main (int argc, char *argv[])

{

printf ("Bonjour");

fork ();

return 0;

}

32

Process Creation:
fork() replicates the whole bubble!

33

0

1
2

3

4

…

1fd

stdout

Bonjour

buffer

Process Creation:
fork() replicates the whole bubble!

34

0

1
2

3

4

…

0

1
2

3

4

…

fork() ≈ replicate

1fd

stdout

Bonjour

buffer

1fd

stdout

Bonjour

buffer

Process Creation:
fork() replicates the whole bubble!
• File descriptors are not closed

• And they share records in the opened
file table

• Processes share the same file
offset!

int main (int argc, char *argv[])

{

int fd = open (FILENAME, O_RDONLY);

check (fd, "Cannot open %s file",

FILENAME);

fork ();

lire (fd); // See lecture.c

close (fd);

return 0;

}

35

Process Creation:
fork() replicates the whole bubble!

36

0

1
2

3

4

…

0

1
2

3

4

…

fork() ≈ replicate

3fd 3fd

Opened files table

Mode: RDONLY
Offset: 0
Ref counter: 2
File info:

Waiting for child termination

• Wait until one child is terminated:
• pid_t wait (int *stat_loc);

• Information about termination is stored in *stat_loc
• WEXITSTATUS (*stat_loc) gives return value of child process

• More powerful version:
• pid_t waitpid (pid_t pid, int *stat_loc, int options);

• pid can be -1 (= ANY)
• options can be WNOHANG (= just check without blocking)

37

Waiting for child termination
int main (int argc, char *argv[])

{

pid_t pid;

pid = fork ();

if (pid) { // father

int status;

pprintf ("Parent's fork return value: %d\n", pid);

wait (&status);

pprintf ("Child termination detected (return code: %d)\n", WEXITSTATUS (status));

} else { // Child

pprintf ("Child's fork return value: %d\n", pid);

sleep(3);

pprintf ("Child is terminating\n");

return 31;
}

return 0;

}

38

time

actor

Process Creation

• The Kernel originally spawns one
process
• This process will in turn create

several processes (background
DAEMONs)
• Using the fork() system call

Kernel
mode

39

P0

time

actor

Process Creation

40

Kernel
mode

P0

KERNEL

P0

Process
list

time

actor

Process Creation

41

Kernel
mode sys_fork

fork
syscallP0

KERNEL

P0

Process
list

time

actor

Process Creation

42

Kernel
mode sys_fork

fork
syscallP0

P1 P1 is ready

KERNEL

P0

Process
list

P1

copy

time

actor

Process Creation

43

Kernel
mode sys_fork

fork
syscallP0

P1 P1 is ready

KERNEL

P0

Process
list

P1

?

time

actor

Process Creation

44

Kernel
mode sys_fork

fork
syscallP0

P1 P1 is ready

syscall
ret

KERNEL

P0

Process
list

P1

time

actor

Process Creation

45

Kernel
mode sys_fork

fork
syscallP0

P1 P1 is ready

syscall
ret

sys_timer

KERNEL

P0

Process
list

P1

?

time

actor

Process Creation

46

Kernel
mode sys_fork

fork
syscallP0

P1 P1 is ready

syscall
ret

sys_timer

KERNEL

P0

Process
list

P1

Process transformation

• A process can “reboot” and execute a new program

• Family of “exec” functions
• int execlp(char *file, char *arg0, ... , NULL);

• l: list of arguments
• p: path

• int execvp(const char *file, char *const argv[]);
• v: vector of arguments
• p: path

• Use execl when list of arguments is known at compile time
• Otherwise use execv

47

Process transformation

• Exec is a one-way trip
• No return

int main (int argc, char *argv[])

{
printf ("I am about to become ls -l\n");

execl ("/bin/ls", "ls", "-l", NULL);

perror ("execl");

return EXIT_FAILURE;

}

48

Exec only preserves kernel information

49

0

1
2

3

4

…
Stack

Code
Data
Heap

Libs

0

1
2

3

4

…

Stack

Code
Data
Heap

Libs

kept “as is”

Re-initialized

exec

Process transformation

• Exec is a one-way trip
• No return

• Caveat:
• No visible printf L

int main (int argc, char *argv[])

{
printf ("I am about to become ls -l");

execl ("/bin/ls", "ls", "-l", NULL);

perror ("execl");

return EXIT_FAILURE;

}

50

Exec only preserves kernel information

51

0

1
2

3

4

…

0

1
2

3

4

…

empty

exec

1fd

stdout

I am about to become…

buffer

1fd

stdout

buffer

Process transformation

• The file descriptor table is kept
unmodified by exec
• Redirections performed before

exec are still in place

• That’s how we can redirect
input/output of a binary program
• No modification to the code of ls

char *FILENAME="output.txt";

int main (int argc, char *argv[])
{

int fd = open (FILENAME, O_WRONLY | O_CREAT,
0666);

check (fd, "Cannot open %s file", FILENAME);

dup2 (fd, 1); close (fd);

printf ("I am about to become "
"\"ls -l > output.txt\"\n");

execl ("/bin/ls", "ls", "-l", NULL);
perror ("execl");

return EXIT_FAILURE;
}

52

Process transformation

• The file descriptor table is kept
unmodified by exec
• Redirections performed before

exec are still in place

• That’s how we can redirect
input/output of a binary program
• No modification to the code of ls

• Oh, by the way
• Do we see the output of printf this

time?

char *FILENAME="output.txt";

int main (int argc, char *argv[])
{

int fd = open (FILENAME, O_WRONLY | O_CREAT,
0666);

check (fd, "Cannot open %s file", FILENAME);

dup2 (fd, 1); close (fd);

printf ("I am about to become "
"\"ls -l > output.txt\"\n");

execl ("/bin/ls", "ls", "-l", NULL);
perror ("execl");

return EXIT_FAILURE;
}

53

Combining fork() and exec()

• When the shell executes

ls -l > output.txt

• It cannot just
• Redirect STDOUT to “output.txt”
• And perform exec “ls”…
• Because the shell wouldn’t survive

• That’s why the shell forks a child
which will do the job

int main (int argc, char *argv[])
{

pid_t pid;

pid = fork ();
if (pid) { // father

// wait child

} else { // Child

// set redirections
// exec command

}

return 0;
}

54

Process States

- 55

Just
Created

Process States

- 56

Just
Created

Ready

Process States

- 57

Just
Created

Ready Running

elected

Process States

- 58

Just
Created

Ready Running

elected

Running

Process States

- 59

Just
Created

Ready Running

elected

Running

iret

Process States

- 60

Just
Created

Ready Running

elected

Running

iret syscall / interrupt / exception

Process States

- 61

Just
Created

Ready Running

elected

preempted

Running

iret syscall / interrupt / exception

Process States

- 62

Just
Created

Ready Running Blocked

elected

preempted

forced to wait

Running

iret syscall / interrupt / exception

Process States

- 63

Just
Created

Ready Running Blocked

elected

preempted

forced to wait

Awakened
(e.g. completion of I/O operation)

Running

iret syscall / interrupt / exception

Process States

- 64

Just
Created

Ready Running Blocked

elected

preempted

forced to wait

Awakened
(e.g. completion of I/O operation)

Running

iret syscall / interrupt / exception

Zombie

exit, abort

Additional resources
available on

http://gforgeron.gitlab.io/progsys/

65

http://gforgeron.gitlab.io/se/

