
System Programming:
Communication through pipes

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

1

https://gforgeron.gitlab.io/progsys/

The concept of pipe

• Major mechanism used by the shell
• ls | grep pattern
• ./prog | cat -n | less
• Etc.

• Some operating systems (MS-DOS) implement pipes using files
• Example: ls | grep pattern

• The output of “ls” is redirected to a temporary file
• The system waits for the termination of “ls”
• “grep pattern” is executed, with its input redirected from the file

• No parallelism
• Max file size limit can be reached

2

The concept of pipe

• In Unix systems, pipes are special objects allocated in the kernel
• FIFO ordering
• Fixed capacity

3

The concept of pipe

• In Unix systems, pipes are special objects allocated in the kernel
• FIFO ordering
• Fixed capacity

• The “pipe” syscall
int pipe(int fildes[2]);

• Creates a pipe and returns two file descriptors
• One for reading (fildes[0]) and one for writing (fildes[1])

4

fildes[1] fildes[0]

The concept of pipe

• In Unix systems, pipes are special objects allocated in the kernel
• FIFO ordering
• Fixed capacity

• The “pipe” syscall
int pipe(int fildes[2]);

• Creates a pipe and returns two file descriptors
• One for reading (fildes[0]) and one for writing (fildes[1])

• Reading and writing are done using usual read/write
• No lseek

5

write read

int tube[2];
pipe (tube);

- 6

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3tube

Opened files table

Mode: RD_ONLY
Offset: 0
Ref counter: 1
File info:

4

Mode: WR_ONLY
Offset: 0
Ref counter: 1
File info: write read

int tube[2];
pipe (tube);

- 7

process

file
descriptor

table

0

1
2

3

4

5

6

7

…

3tube 4

write read

Simplified view

Trying out our first pipe

• pipe.c

8

9

Pipe are intended to allow communication
between processes
• But pipes created with “pipe” are anonymous

• No way to share their name
• Look at mkfifo if named pipes are really what you need

• Fortunately, pipes are inherited when forking new processes…

10

int tube[2];
pipe (tube); fork();

- 11

parent

file
descriptor

table

0

1
2

3

4

5

6

7

…

3tube 4

child

0

1
2

3

4

5

6

7

…

3tube 4

write read

Sending characters through a pipe

• Hand-made implementation of
• Line numbering + to upper case

• pipe-n-fork.c

12

father child

file

To
uppercat -n

stdout

The concept of pipe

• When both sides of a pipe are opened
• read is blocking if the pipe is empty
• write is blocking if the pipe is full

13

The concept of pipe

• When both sides of a pipe are opened
• read is blocking if the pipe is empty
• write is blocking if the pipe is full

• Pipe closed on the write side
• read returns 0 (end of file)

14

The concept of pipe

• When both sides of a pipe are opened
• read is blocking if the pipe is empty
• write is blocking if the pipe is full

• Pipe closed on the write side
• read returns 0 (end of file)

• Pipe closed on the read side
• write raises an exception (“Broken pipe”)

15

Sending characters through a pipe

• Redirections to only use
STDIN/STDOUT
• pipe-n-redir.c

16

father child

file

To
uppercat -n

stdout

Sending characters through a pipe

• Redirections to only use
STDIN/STDOUT
• Exec to use legacy

• cat -n
• tr a-z A-Z

• pipe-n-exec.c

17

father child

file

tr a-z A-Zcat -n

stdout

Sending characters through a pipe

• Problem:
• Child still output characters after

shell prompt

18

father child

file

tr a-z A-Zcat -n

stdout

Sending characters through a pipe

• Problem:
• Child still output characters after

shell prompt

• One solution would be to swap
roles of father & child…

19

father child

file

tr a-z A-Zcat -n

stdout

Sending characters through a pipe

• Problem:
• Child still output characters after

shell prompt

• But the shell acts differently: it
creates two children!

• ultimate-pipe.c

20

Child 1 Child 2

file

tr a-z A-Zcat -n

stdoutFather

fork fork

Setting up a chain of processes

• chain.c

21

P1 PN-1

Cmd N-1Cmd 1

stdout

P0

Cmd 0

stdin

…

Atomicity of read/write

• What happens if multiple
processes simultaneously write
into (or read from) the same
pipe?
• Atomic if size < PIPE_BUF

• (typically 512 bytes)

22

write
read

write
read

read

Additional resources
available on

http://gforgeron.gitlab.io/progsys/

23

http://gforgeron.gitlab.io/progsys/

