System Programming:
Signals Handling

Raymond Namyst

Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

The concept of signal

* Signals are notifications sent to processes
 Signals are just numbers (no additional information attached)

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGEMT 8) SIGFPE 9) SIGKILL 10) SIGBUS
11) SIGSEGV 12) SIGSYS 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGURG 17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGINFO 30) SIGUSR1

31) SIGUSR2
(obtained using “kill -1”)

The concept of signal

 Signals are mostly used to notify events

* From the OS
* Timer expiration (SIGALRM), Child termination (SIGCHLD)
* Program interrupt — Ctrl-C (SIGINT), Broken pipe (SIGPIPE)
* Terminal disconnection (SIGHUP)

* From applications

* From the CPU (exceptions)

The concept of signal

 Signals are mostly used to notify events
* From the OS
* Timer expiration (SIGALRM), Child termination (SIGCHLD)
* Program interrupt — Ctrl-C (SIGINT), Broken pipe (SIGPIPE)
* Terminal disconnection (SIGHUP)

* From applications
* “please terminate” (SIGTERM)
« “die!” (SIGKILL)
* SIGUSR1, SIGUSR2
* Job control (SIGSTOP, SIGCONT)

* From the CPU (exceptions)

The concept of signal

 Signals are mostly used to notify events
* From the OS
* Timer expiration (SIGALRM), Child termination (SIGCHLD)
* Program interrupt — Ctrl-C (SIGINT), Broken pipe (SIGPIPE)
* Terminal disconnection (SIGHUP)

* From applications
* “please terminate” (SIGTERM)
« “die!” (SIGKILL)
* SIGUSR1, SIGUSR2
* Job control (SIGSTOP, SIGCONT)

* From the CPU (exceptions)
* Segmentation fault (SIGSEGV)
* lllegal Instruction (SIGILL)
* Dereferencing misaligned pointer (SIGBUS)
* Arithmetic error (SIGFPE)

The concept of signal

* Signals are asynchronous
* No guarantee of express delivery (except for CPU exceptions)

* On the destination process, a signal can be either
* Delivered
* lgnored
* Blocked (i.e. postponed)

* Not every signal can be ignored or postponed
* SIGKILL, SIGSTOP

The concept of signal

* Each signal has its own default behavior

* Many signals lead to process termination
* SIGTERM, SIGINT, SIGALRM, ... and of course SIGKILL

* Some lead to termination + core dump file generation
* SIGSEGV, SIGFPE, SIGBUS, SIGQUIT, SIGABRT, ...

 Some others are ignored
* SIGCHLD

Sending signals explicitly

e Shell command
e kill -SIG pid
e kill -INT 62354
e kill -9 37463 / kill -KILL 37463

Sending signals explicitly

e Shell command
e kill -SIG pid
e kill -INT 62354
e kill -9 37463 / kill -KILL 37463

 System calls
* int raise(int sig);
* Send signal to ourself (current process)
*int kill(pid t pid, 1nt sig);
* Send signal <sig> to process <pid>

Sending signals explicitly

* Sig.C

Signal handling

* The kernel maintains a signal
handling table per process

* The handler field specifies how to
deliver each signal
e SIG_DFL: default behavior
e Signal specific
* SIG_IGN: ignore

* void (*func)(int): user-level handler
signal

handling
* Changing the handler associated table

to a given signal: sigaction
syscall

1
2
3
4
5
6
7
8

process

handler

SIG_DFL

SIG_DFL

SIG_DFL

SIG_DFL

SIG_DFL

SIG_DFL

SIG_DFL

SIG_DFL

Signal handling

* Changing the handler associated void m_func i s
to a given signal:
* Fill a structure and call sigaction

handler
SIG_DFL
struct sigaction sa, old; my_func
SIG_DFL
SIG_DFL
sa.sa_flags = 0; SIG_DFL

i . SIG_DFL
sigemptyset(&sa.sa_mask); handling o

sa.sa_handler = my_func; table SIG_DFL

sigaction (SIGINT, &sa, &old);

Signal handling

* Changing the handler associated to void my. func (int sig
a given signal: ()

e Sometimes, | will use a simplified
syntax:

handler
sigaction (SIGINT, my_func); SIG_DFL
my_func
SIG_DFL

* When the signal is delivered SIG_DFL

* The handler is called as if the function SIG_DFL
was inserted between previous and SIG_DFL

current instruction handling SIG_DFL
table SIG_DFL

e catch.c, slow-catch.c

Signal Handling

* Temporary catch of signals
e Catch (SIGINT)
» Sleep (5)
e Uncatch (SIGINT)
» Sleep (5)

* tempo-catch.c

Catching SIGCHLD

* SIGCHLD is sent to parent each time a process terminates
e But SIGCHLD is ignored by default

* A process can setup a handler to catch SIGCHLD
* And call wait() to eliminate zombies

e child.c

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

Kernel
mode sys_fork

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

Py is ready..

fork
sysicall

Kernel r
mode sys_fork

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

Kernel
mode sys_fork

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

Kernel
mode sys_fork

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

Kernel
mode sys_fork sys fork

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

fork
re?u rn

Kernel :
mode sys_fork sys fork

Catching SIGCHLD

* A child can terminate quickly...
...very quickly

e So SIGCHLD can be delivered
very soon...
 Back to child.c ?

Kernel
mode

4

sys_fork sys_fork

fork
return

Pending signals

* Signal delivery is asynchronous

* The kernel simply sets a “pending”
bit in a table!

 Signal is delivered “when possible”

Pending signals

* Signal delivery is asynchronous

* The kernel simply sets a “pending”
bit in a table!

 Signal is delivered “when possible”

* Asa conseqgquence

* If two signals are sentin a very
close time interval...
* One may be lost!

Blocking signals

* Sometimes, the delivery of a signal
is not desirable

* During the update of a complex data
structure

* When the process is not (yet) ready
to catch signals

e A process can postpone (i.e. block)
the delivery of signals

* The kernel maintains an array of bits
e Current signal mask

Blocking signals

* Sometimes, the delivery of a signal
is not desirable

* During the update of a complex data
structure

* When the process is not (yet) ready
to catch signals

e A process can postpone (i.e. block)
the delivery of signals

* The kernel maintains an array of bits
e Current signal mask

* Blocked signals will stay “pending”
until delivery is allowed again

Blocking signals

* The sigprocmask syscall modifies the
current signal mask

int sigprocmask(int how, sigset_t x*set,
sigset_t *oset);

* 2 steps
e Construct a mask (set) in user space

* Call sigprocmask and tell how to combine
the provided mask with the current signal
mask:

* SIG_SETMASK: replace

e SIG_BLOCK: block the signals marked with 1,
keep others as is

SIG_UNBLOCK: unblock signals marked with 1,
keep others as is

Blocking signals

* Example: blocking SIGQUIT

sigset_t s;

Blocking signals

* Example: blocking SIGQUIT

sigset_t s;
sigemptyset (&s);

Blocking signals

* Example: blocking SIGQUIT

sigset_t s;
sigemptyset (&s);
sigaddset (&s, SIGQUIT);

Blocking signals

* Example: blocking SIGQUIT

sigset_t s;

sigemptyset (&s);
sigaddset (&s, SIGQUIT);

sigprocmask (SIG_SETMASK, &s, NULL);

Blocking signals

* Example: blocking SIGQUIT

sigset_t s;
sigemptyset (&s);
sigaddset (&s, SIGQUIT);

sigprocmask (SIG_BLOCK, &s, NULL);

Blocking signals

* Example: unblocking SIGQUIT

sigset_t s;
sigemptyset (&s);
sigaddset (&s, SIGQUIT);

sigprocmask (SIG_UNBLOCK, &s, NULL);

Blocking signals

* See mask.c

Blocking signals

* During the execution of a signal handler, the corresponding signal is
automatically blocked
* No “recursive” invocations of handler

* Additional signals can be blocked
* Purpose of sigaction struct’s sa_mask field

Handling exceptions

* CPU exceptions trap into the
kernel

* In turn, the kernel sends a signal
to current process
* SIGSEGV, SIGILL, SIGFPE

* What happens when we install a
handler for such signals ?
* See fault.c

int *ptr = NULL;

void my_sig_handler (int sig)
{
printf ("I received signal %s\n",
strsignal (sig));

}

int main (int argc, char *argvl[])

{

sigaction (SIGSEGV, my_sig_handler);
xptr = 12;

return 0;

by

Handling exceptions

* CPU exceptions trap into the
kernel

* In turn, the kernel sends a signal
to current process
* SIGSEGV, SIGILL, SIGFPE

* What happens when we install a
handler for such signals ?
* See fault.c

int *ptr = NULL;

void my_sig_handler (int sig)
{
printf ("I received signal %s\n",
strsignal (sig));

}

int main (int argc, char *argvl[])

{

sigaction (SIGSEGV, my_sig_handler);
xptr = 12;

return 0;

by

Handling exceptions

* When the CPU attempts to
perform a faulty instruction

Kernel
mode

Handling exceptions

* When the CPU attempts to
perform a faulty instruction
* An exception is raised

exception
A

Kernel
mode

Handling exceptions

* When the CPU attempts to
perform a faulty instruction
* An exception is raised
* Execution traps into the kernel

Kernel
mode

A

exception

Handling exceptions

* When the CPU attempts to
perform a faulty instruction
* An exception is raised
* Execution traps into the kernel

* Kernel checks if a signal handler is
installed
* If so, it modifies the return path so

that the handler gets executed when
returning to user space

Kernel
mode

exception
A

Handling exceptions

* When the CPU attempts to
perform a faulty instruction
* An exception is raised
* Execution traps into the kernel

* Kernel checks if a signal handler is
installed
* If so, it modifies the return path so

that the handler gets executed when
returning to user space

Kernel
mode

exception
A

A

Handling exceptions

* When the CPU attempts to
perform a faulty instruction
* An exception is raised
Execution traps into the kernel

Kernel checks if a signal handler is
installed

* If so, it modifies the return path so
that the handler gets executed when
returning to user space

Signal handler is executed
Faulty instruction is retried

Kernel
mode

exception
A

A

Instr. retry

Handling exceptions

* Let’s try to fix it!

* In the handler, we change the
value of the ptr variable...

e See fixfault.c

static int *ptr = NULL;
static int glob;

void my_sig_handler (int sig)
{
pprintf ("ptr was %p\n", ptr);
ptr = &glob;
pprintf ("Fixing ptr to %p\n", ptr);
¥

int main (int argc, char *argvl[])
{

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);
*ptr = 12;

return 0;

Handling exceptions

static int *ptr = NULL;
static int glob;

* OK, we have a problem!
* Only the faulty machine void my_sig_handler (int sig)

instruction gets re-executed {
pprintf ("ptr was %p\n", ptr);

ptr = &glob;

® NOt the C Statementl pprintf ("Fixing ptr to %p\n", ptr);
' }

int main (int argc, char *argvl[])
*ptr = 12; {

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);
*ptr = 12;

return 0;

Handling exceptions

* OK, we have a problem!

* Only the faulty machine
instruction gets re-executed

* Not the C statement!

*ptr = 12;

_ptr(%srip), %rcx
$12, (%rcx)

static int *ptr = NULL;
static int glob;

void my_sig_handler (int sig)
{
pprintf ("ptr was %p\n", ptr);
ptr = &glob;
pprintf ("Fixing ptr to %p\n", ptr);
¥

int main (int argc, char *argvl[])
{

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);
*ptr = 12;

return 0;

Handling exceptions

* OK, we have a problem!

* Only the faulty machine
instruction gets re-executed

* Not the C statement!

*ptr = 12;

_ptr(%srip), %rcx
$12, (%rcx)

static int *ptr = NULL;
static int glob;

void my_sig_handler (int sig)
{
pprintf ("ptr was %p\n", ptr);
ptr = &glob;
pprintf ("Fixing ptr to %p\n", ptr);
¥

int main (int argc, char *argvl[])
{

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);
*ptr = 12;

return 0;

Handling exceptions

* OK, we have a problem!

* Only the faulty machine
instruction gets re-executed

* Not the C statement!

*ptr = 12;

We would like ey, MOV(Q _ptr(%srip), %rcx
to restart here o
mov L $12, (%rcx)

static int *ptr = NULL;
static int glob;

void my_sig_handler (int sig)
{
pprintf ("ptr was %p\n", ptr);
ptr = &glob;
pprintf ("Fixing ptr to %p\n", ptr);
¥

int main (int argc, char *argvl[])
{

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);
*ptr = 12;

return 0;

Handling exceptions

static int *ptr = NULL;

* OK, we have a problem! ctatic int globs

* Only the faulty machine void my_sig_handler (int sig)
instruction gets re-executed {
pprintf ("ptr was %p\n", ptr);
ptr = &glob;

® NOt the C Statementl pprintf ("Fixing ptr to %p\n", ptr);
' }

int main (int argc, char *argvl[])
{

struct sigaction saj;

That is: sigaction (SIGSEGV, my_sig_handler);

we would like m—)

to restart here! kptr = 12;

return 0;

b

Handling exceptions

static int *ptr = NULL;

* OK, we have a problem! ctatic int globs

* Only the faulty machine void my_sig_handler (int sig)

instruction gets re-executed ¢
ptr = &glob;

super_goto label;

* We need sort of a “super goto” '

int main (int argc, char *argvl[])
{

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);

label:
*ptr = 12;

return 0;

b

Handling exceptions

static int *ptr = NULL;

* OK, we have a problem! ctatic int globs

* Only the faulty machine void my_sig_handler (int sig)

instruction gets re-executed ¢
ptr = &glob;

super_goto label;

* We need sort of a “super goto” '

e But goto only changes the instruction
pointer register

int main (int argc, char *argvl[])
{

struct sigaction sa;
sigaction (SIGSEGV, my_sig_handler);

label:
*ptr = 12;

return 0;

b

Handling exceptions

* OK, we have a problem!

* Only the faulty machine
instruction gets re-executed

* We need sort of a “super goto”
e But goto only changes the instruction
pointer register

* In our case, we also need to change
the stack pointer

e As it would happen upon a “normal
return” from the handler

static int *ptr = NULL;

static int glob;

void my_sig_handler (int sig)

{

b

ptr = &glob;
super_goto label;

int main (int argc, char *argvl[])

{

struct sigaction saj;

sigaction (SIGSEGV, my_sig_handler);

label:

b

*ptr = 12;

return 0;

Non-local jumps

* |dea
» Save processor’s state at some point
* Go back to this point later by restoring processor’s state

typedef struct {

// space to save registers, etc.

} Jmp_buf [1];

Jmp buf my buf;

Non-local jumps

* Setimp

jmp buf my buf;
int r = setjmp (my buf);

* First call
e Saves registers into my_buf
* Returns O

Non-local jumps

* Setimp

jmp buf my buf;
int r = setjmp (my buf);

* First call
e Saves registers into my_buf
* Returns O

* Next returns
e Come from teleportation!

Non-local jumps

* Setjmp * Longimp

jmp buf my buf; longjmp (my buf, wval);
int r = setjmp (my buf);
* Restores all registers stored in

* First call my buf
* Thus, control goes back to where

* Saves registers into my buf
instruction pointer was last saved

* Returns O

* Next returns
e Come from teleportation!

Non-local jumps

* Setimp * Longjmp

jmp buf my buf; longjmp (my buf, wval);
int r = setjmp (my buf);
* Restores all registers stored in

* First call my buf
* Thus, control goes back to where

instruction pointer was last saved

* Inside a call to setjmp!
* Next returns * The return value of setjmp is val

* Come from teleportation! « val should be # 0

* Saves registers into my buf
* Returns O

Non-local jumps

: ' buf buf;
* First example JIP-DHT BH

int main (int argc, char xargvl[])

{
* The following code features an int r;

endless loop
* longjmp “jumps” back to setjmp

r = setjmp (buf);

* See longjmp.c longjmp (buf, 1);

return 0;

Non-local jumps

e We usually use setjimp/longjmp
to go back to checkpoints in the
code

* Longjmp is used to raise
a "soft exception”

e Faster than propagating -1 return
codes when error detected at a
deep nesting level

* See retry.c

r = setjmp (buf);

if (r==20) {

compute ();

} else {
// Tix the problem

// and retry or do something else
compute ();

Non-local jumps

* |dea static int *ptr = NULL;

. static int glob;
* Use longjmp to escape from a

signal handler!
jmp_buf buf;

void my_sig_handler (int sig)

{
ptr = &glob;
longjmp (buf, 1);
}

e See truefix.c

Non-local jumps

e Works soooo well... sigaction (SIGSEGV, my_sig_handler);

setjmp (buf);
e Let’s use it twice! *ptr = 12;
e See fix-and-fix.c

ptr = NULL;

setjmp (buf);
xptr = 13;

Non-local jumps

e Works soooo well... sigaction (SIGSEGV, my_sig_handler);

setjmp (buf);
* Let’s use it twice! *ptr = 12;
» See fix-and-fix.c
* Damned! It doesn’t work!

. rhEchondSegnuﬁnaﬁonFauhis ptr = NULL;
etha

setjmp (buf);
xptr = 12;

Non-local jumps

e Works soooo well... sigaction (SIGSEGV, my_sig_handler);

setjmp (buf);
* Let’s use it twice! *ptr = 12;
» See fix-and-fix.c
* Damned! It doesn’t work!

. rhEchondSegnuﬁnaﬁonFauhis ptr = NULL;
etha

* Reason: SIGSEGV has been masked
since the first call to the handler setjmp (buf);
xptr = 12;

Non-local jumps

* When mixing setjmp/longjmp and signals

* |In addition to CPU registers...
...the current signal mask should probably be saved/restored as well

* sigsetjimp/siglongjmp
sigjmp buf my buf;
int r = sigsetjmp (my buf, 1);
= regular setjmp
= save current signal mask

e See ultimate-fix.c

Non-local jumps

* Caveats

* Setjmp saves “some CPU registers”
* What does it mean with respect to variables?

* Does setjmp capture i, j and k? Maybe one of them?
{
int 1, J, k;
setjmp (buf);

* See registers.c

Additional resources
available on

http://gforgeron.gitlab.io/progsys/

