System Programming:
Threads

Raymond Namyst

Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

Communication between processes

* Processes have private address spaces

* They don’t seem to share any data
e Actually, they do (mostly in read-only mode, e.g. code)

e Exchanging data between processes is painful... and slow!
 BTW: Signals are not aimed at communicating rich information
* Pipes: system calls are slow

* Except with mmap...

Address space and execution flow

* Many applications spawn multiple processes to speed up execution
e Perform many I/O intensive tasks concurrently
* Perform tasks in parallel over multicore architectures

* But process creation/destruction is slow
 Memory allocation + deallocation + initialization

* We only want to start a new activity
e Sharing data is bonus

Threads

 Threads = Execution flow

* Process = Thread + Address
Space

e Several threads can share the
same address space

Threads

Process featuring
2 threads

Our first “hello thread” program

#include <pthread.h> int main (int argc, char xargvl[])
#include <stdio.h> {
pthread_t pid;

#include <stdlib.h>
pthread_create (&pid, NULL, thread_func, "Hello");

#include <string.h>

printf ("Hello from main\n");

void xthread_func (void xarg)

{ return 0;

printf ("%s from thread!\n", arg);

return NULL;

Our first “hello thread” program

#include <pthread.h> int main (int argc, char xargvl[])

#include <stdio.h> {
pthread_t pid;

#include <stdlib.h>
pthread_create (&pid, NULL, thread_func, "Hello");

#include <string.h>

printf ("Hello from main\n");
void xthread_func (void xarg)
{ pthread_join (pid, NULL);

printf ("%s from thread!\n", arg);

return 0;
return NULL;

Creating a group of threads

#include <pthread.h> int main (int argc, char xargvl[])
#include <stdio.h> {

#include <stdlib.h> if (argc > 1)

#include <string.h> NBTHREADS = atoi (argvI[1]);

int NBTHREADS = 10; pthread_t pids[NBTHREADS];

void xthread_func (void *arg) for (int 1 = @; i < NBTHREADS; i++)
{ pthread_create (&pids[i], NULL, thread_func, i);

int me = arg;
printf ("Hello from main\n");

printf ("Hello from thread %d\n", me);
for (int 1 = @; i < NBTHREADS; i++)

return NULL; pthread_join (pids[i], NULL);

return 0;

Creating a group of threads

e Useful when decomposing computation is smaller parts

e Each thread must decide which part it should address
e Easier if threads are numbered [0..N-1]

* See "spin” kernel, under the EasyPAP environment

Parallelizing computations

* The "spin” kernel involves * TODO: extend spin.c!
independent computations on
the elements of an array
 Trivially parallel

* QOur first work distribution
strategy assigns horizontal
stripes of (approximately the
same number of) pixels to
threads

Parallelizing computations

void xthread_starter (void xarg)

* The "spin” kernel involves {

independent computations on
the elements of an array
 Trivially parallel

for (int i = line; i < line + slice; i++)
for (int j = 0; j < DIM; j++)

cur_img (i, j) = compute_color (i, j);

* QOur first work distribution
strategy assigns horizontal }
stripes of (approximately the
same number of) pixels to
threads

return NULL;

Parallelizing computations

computation

* Why did we choose a static block time
distribution?

Parallelizing computations

 Why did we choose a static block
distribution?

* Because we assumed that the
computation time of
“compute_color” is constant

* |.e. does not depend on (i, j)

* Let us consider a 1D example
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

computation
time
A

Parallelizing computations

computation

* Let us consider a 1D example time
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

* What if the computation time is
linearly increasing?

Parallelizing computations

computation

* Let us consider a 1D example time
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [1] = f (1);

* What if the computation time is
linearly increasing?

* Our block distribution is no longer
relevant

Parallelizing computations

* Let us consider a 1D example
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [1] = f (1);

* What if the computation time is
linearly increasing?
* Our block distribution is no longer
relevant

* Well, using a mirror block
distribution assigning two blocks per
thread would work...

computation
time
A

Parallelizing computations

* Let us consider a 1D example
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

* What if the computation time is
linearly increasing?

e A cyclic distribution of indexes
would be a good option

computation
time
A

#tthreads

Parallelizing computations

computation

* Let us consider a 1D example time
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

* What if the computation time is
linearly increasing?

* A cyclic distribution of indexes H “
would be a good option | ”

<+
ty ty #tthreads

Parallelizing computations

computation

* Let us consider a 1D example time
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

* What if the computation time is
unpredictable?

* Even the cyclic strategy may fail

Parallelizing computations

* Let us consider a 1D example
float tab [MAX];

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

* What if the computation time is
unpredictable?

* Dynamic strategy

e Distribute indexes in a greedy
manner

* To be explored later on

computation
time
A

Processes and Threads

* Some (daemons) threads only
run inside the kernel

Processes and Threads: the Big Picture

Processes and Threads: the Big Picture

Race conditions

* Threads can access the same data simultaneously
* May lead to undefined behavior, data corruption, ...

* Think about
* Linked lists, graphs, hash tables

 Structures where several fields must be updated consistently
* Orjustintegers...

* When executing kernel code, processes share data as well
* So the kernel must enforce synchronization

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

 What if two threads perform an
insert simultaneously, at the same
position?

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

 What if two threads perform an
insert simultaneously, at the same
position?

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

 What if two threads perform an
insert simultaneously, at the same
position?

Race conditions

* Example with linked lists

* Insertion of a new element
* 3 steps
1. Allocate

2. Set next
3. Modify previous

 What if two threads perform an
insert simultaneously, at the same
position?
* We may end up with a corrupted list

Race conditions

volatile int n = 0;

((

for (int 1 = 0y 1 < 100; i++) for (int 1 = 0y i < 100; i++)
n++; n++;

Race conditions

volatile int n = 0;

((

for (int 1 = 0y 1 < 100; i++) for (int 1 = 0y i < 100; i++)
n++; n++;

n € [100,200] ?

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

load @n, r1

incrl .
<«—— context switch

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

storerl, @n

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

storerl, @n

load @n, r1
incrl

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

storerl, @n

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

storerl, @n

Possible scenario

load @n, r1
n++ < incrl
storerl, @n

€ [2,200] !

/\/\

load @n, r1
incrl
storerl, @n

store iix Jn

load @n, r1
incrl

load @n, r1
incrl
storerl, @n

storerl, @n

Race conditions

* Even the simple ++ operator is not an atomic operation
* So we must prevent multiple threads to execute this operation concurrently!

* To do so, we need synchronization tools

Mutexes

* A mutex is an object intended to ensure MUTual EXclusion between
threads
e pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

* Two operations can be performed:

e pthread _mutex_lock (pthread_mutex_t *m);
* Blocks the caller while lock is not available

* pthread _mutex_unlock (pthread _mutex_t *m);
* Releases the lock (never blocking)

Mutexes

e Let’s see how it works on a
simple example mutex m;
* Three threads /

e Each one calls lock(), then unlock()
lock (m)

Mutexes

e Let’s see how it works on a
simple example mutex m;
* Three threads /

e Each one calls lock(), then unlock()
lock (m)

Mutexes

e Let’s see how it works on a
simple example mutex m;
* Three threads /

e Each one calls lock(), then unlock()
lock (m)

)

unlock (m)

)

Mutexes

e Let’s see how it works on a
simple example mutex m;
* Three threads /

e Each one calls lock(), then unlock()
lock (m)

)

unlock (m)

)

Mutexes

e Let’s see how it works on a
simple example
e Three threads / /

e Each one calls lock(), then unlock()
lock (m)

)

\ unlock (m)

unlock (m) >

Mutexes

e Let’s see how it works on a
simple example
e Three threads / /

e Each one calls lock(), then unlock()
lock (m)

)

\ unlock (m)

unlock (m) \
/ /

Mutexes

e Let’s see how it works on a
simple example
e Three threads / /

e Each one calls lock(), then unlock()
lock (m)

)

\ unlock (m)

unlock (m) > /
/ unlock (m)

Parallelizing computations

computation

* Back to our 1D example time

for (int 1 = 0; i < MAX; i++)
tab [i] = f (1i);

* Dynamic strategy
float tab [MAX];

for (;;5) {
int i = get_index();
if (i > MAX)
break;
tab [i] = f (1);
}

Additional resources
available on

http://gforgeron.gitlab.io/se/

