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The OpenMP standard (www.openmp.org)

• Parallel Programming Interface designed for shared-memory 
multiprocessor machines
• Language extensions to C, C++ and Fortran

• Incremental parallelization
• #pragma omp directive
• Less intrusive than adding calls to libraries (e.g. POSIX threads)
• Pragmas can be ignored to easily switch back to the original sequential code

• Hmm, really?
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The OpenMP standard (www.openmp.org)

• Incremental parallelization
• Pragmas are like “On my honor, I swear that this code is parallel”

• Compiler will trust you! (no check)

• #pragma omp directive clause clause …
• The more you say, the more performance you can get (hopefully)

• Seems like a piece of cake, uh?

• The OpenMP standard keeps evolving
• Architecture Review Board (Intel, IBM, AMD, Microsoft, Oracle, etc.)
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Our first “Hello World” program
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#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall  hello.c -o hello

[my-machine] ./hello 

Hello world!

Bye!
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#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall  -fopenmp hello.c -o hello

[my-machine] ./hello  | cat -n

1  Hello world!

2  Hello world!

3  Hello world!

4  Hello world!

5  Hello world!

6  Hello world!

7  Hello world!

8  Hello world!

9  Hello world!
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Our first “Hello World” program
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[my-machine] make

gcc -Wall  -fopenmp hello.c -o hello

[my-machine] ./hello  | cat -n

1  Hello world!

2  Hello world!

3  Hello world!

4  Hello world!

5  Hello world!

6  Hello world!

7  Hello world!

8  Hello world!

9  Hello world!

10  Hello world!

11  Hello world!

12  Hello world!

13  Bye!
Output of the “lstopo” command on my-machine



Our first “Hello World” program
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#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall  -fopenmp hello.c -o hello

[my-machine] OMP_NUM_THREADS=4 ./hello | cat -n

1  Hello world!

2  Hello world!

3  Hello world!

4  Hello world!

5  Bye!



Our first “Hello World” program
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#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel num_threads(6)

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall  -fopenmp hello.c -o hello

[my-machine] ./hello | cat -n

1  Hello world!

2  Hello world!

3  Hello world!

4  Hello world!

5  Hello world!

6  Hello world!

7  Bye!



Our first “Hello World” program
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#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel num_threads(6)

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall  -fopenmp hello.c -o hello

[my-machine] ./hello | cat -n

1  Hello world!

2  Hello world!

3  Hello world!

4  Hello world!

5  Hello world!

6  Hello world!

7  Bye!
Usually not a good idea



Fork-Join parallelism

• A single thread initially executes 
the main function
• When it reaches a “parallel” 

directive
• A team of threads is created
• The initial thread is part of the 

team (and is the master)
• Each thread executes the parallel 

region
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Fork-Join parallelism

• At the end of the parallel region
• All threads enter a synchronization 

barrier (rendez-vous)
• When all threads have reached 

the barrier, all threads but the 
master are freed

• The master thread can then 
continue executing code beyond 
the region
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#pragma omp parallel

Barrier

0 1 2 3



How to introduce divergence?
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#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello from %d!\n", omp_get_thread_num());

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall  -fopenmp hello.c -o hello

[my-machine] OMP_NUM_THREADS=4 ./hello

Hello from 0!

Hello from 3!

Hello from 1!

Hello from 2!

Bye!



How to introduce divergence?
int main()

{

#pragma omp parallel

{

switch (omp_get_thread_num())

{

case 0:

f(); break;

case 1:

g(); break;

...

}

}

return EXIT_SUCCESS;

}

• Not a sound solution
• Parallelism is usually not linked to 

the number of OpenMP threads!

• Our program is definitely not an 
“incremental” evolution of a 
sequential one…
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Loop parallelism
int main ()

{

for (int i = 0; i < 10; i++)

f (i);

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be 
performed in parallel
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Loop parallelism
int main ()

{

#pragma omp parallel

{

for (int i = 0; i < 10; i++)

f (i);

}

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be 
performed in parallel

• In the current code
• f(0) is executed by all threads
• So are f(1), f(2), …
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Loop parallelism
int main ()

{

#pragma omp parallel

{

for (int i = 0; i < 10; i++)

f (i);

}

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be 
performed in parallel

• In the current code
• f(0) is executed by all threads
• So are f(1), f(2), …

• We’d like to distribute the 
iteration range to the thread!
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Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

f (i);

}

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be 
performed in parallel

• In the current code
• f(0) is executed by all threads
• So are f(1), f(2), …

• We’d like to distribute the 
iteration range to the thread!
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Distribute iteration range



Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

[my-machine] OMP_NUM_THREADS=4 ./loop

f(0) computed by 0

f(1) computed by 0

f(8) computed by 3

f(9) computed by 3

f(6) computed by 2

f(7) computed by 2

f(2) computed by 0

f(3) computed by 1

f(4) computed by 1

f(5) computed by 1
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Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

• By default (with gcc), the 
iteration range is splitted in 
chunks
• Each thread was assigned one 

chunk of contiguous iterations
• That is: static partitioning
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Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

• By default (with gcc), the 
iteration range is splitted in 
chunks
• Each thread was assigned one 

chunk of contiguous iterations
• That is: static partitioning

• Side note: an implicit barrier
takes place at the end of the 
loop
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Parallelizing computations

• How good is a static block
distribution?
• OK if the computation time of f(i) 

is constant
• I.e. does not depend on the value of i

#pragma omp for schedule (static)
for (int i = 0; i < 10; i++)

f (i);
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Parallelizing computations

• What if the computation time is 
linearly increasing?
• Our block distribution is no longer 

relevant
• Well, using a mirror block 

distribution assigning two blocks per 
thread would work…

• What kind of distribution should 
we use?
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Parallelizing computations

• What if the computation time is 
linearly increasing?
• A cyclic distribution of indexes 

would be a good option
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Parallelizing computations

• What if the computation time is 
linearly increasing?
• A cyclic distribution of indexes 

would be a good option

#pragma omp for schedule (static, 1)
for (int i = 0; i < 10; i++)

f (i);
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Parallelizing computations

• What if the computation time is 
unpredictable?
• Even the cyclic strategy may fail
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Parallelizing computations

• What if the computation time is 
unpredictable?
• Dynamic strategy

• Distribute indexes in a greedy 
manner

#pragma omp for schedule (dynamic)
for (int i = 0; i < 10; i++)

f (i);
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Fixing loop scheduling at run time
int main ()

{

#pragma omp parallel

{

#pragma omp for schedule (runtime)

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

[my-machine] OMP_SCHEDULE=dynamic ./loop

f(0) computed by 0

f(2) computed by 1

f(3) computed by 1

f(4) computed by 1

f(5) computed by 1

f(6) computed by 1

f(7) computed by 1

f(8) computed by 1

f(1) computed by 0

f(9) computed by 2
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Collapsing nested loops
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Problem
• We only distribute 3 i-values to 

threads
• Then each threads executed the j-

loop sequentially
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Collapsing nested loops
int main ()

{

#pragma omp parallel

{

for (int i = 0; i < 3; i++)

#pragma omp for

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Problem
• We only distribute 3 i-values to 

threads
• Then each threads executed the j-

loop sequentially

• Moving #pragma omp for 
between i-loop and j-loop doesn’t 
help that much
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Collapsing nested loops
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Ideally, we’d like to perform all 
the f() calls in parallel on a 12-
core machine
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Collapsing nested loops
int main ()

{

#pragma omp parallel

{

#pragma omp for collapse (2)

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Ideally, we’d like to perform all 
the f() calls in parallel on a 12-
core machine

• The collapse clause distributes 
all possible (i, j) pairs to threads
• Can be used in conjunction with 

schedule (policy)
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Merge two loops


