
Multicore Programming:
OpenMP

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/progsys/

1

https://gforgeron.gitlab.io/progsys/

The OpenMP standard (www.openmp.org)

• Parallel Programming Interface designed for shared-memory
multiprocessor machines
• Language extensions to C, C++ and Fortran

• Incremental parallelization
• #pragma omp directive
• Less intrusive than adding calls to libraries (e.g. POSIX threads)
• Pragmas can be ignored to easily switch back to the original sequential code

• Hmm, really?

2

http://www.openmp.org/

The OpenMP standard (www.openmp.org)

• Incremental parallelization
• Pragmas are like “On my honor, I swear that this code is parallel”

• Compiler will trust you! (no check)

• #pragma omp directive clause clause …
• The more you say, the more performance you can get (hopefully)

• Seems like a piece of cake, uh?

• The OpenMP standard keeps evolving
• Architecture Review Board (Intel, IBM, AMD, Microsoft, Oracle, etc.)

3

http://www.openmp.org/

Our first “Hello World” program

4

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall hello.c -o hello

[my-machine] ./hello

Hello world!

Bye!

Our first “Hello World” program

5

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] ./hello

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Bye!

Our first “Hello World” program

6

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] ./hello | cat -n

1 Hello world!

2 Hello world!

3 Hello world!

4 Hello world!

5 Hello world!

6 Hello world!

7 Hello world!

8 Hello world!

9 Hello world!

10 Hello world!

11 Hello world!

12 Hello world!

13 Bye!

Our first “Hello World” program

7

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] ./hello | cat -n

1 Hello world!

2 Hello world!

3 Hello world!

4 Hello world!

5 Hello world!

6 Hello world!

7 Hello world!

8 Hello world!

9 Hello world!

10 Hello world!

11 Hello world!

12 Hello world!

13 Bye!
Output of the “lstopo” command on my-machine

Our first “Hello World” program

8

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] OMP_NUM_THREADS=4 ./hello | cat -n

1 Hello world!

2 Hello world!

3 Hello world!

4 Hello world!

5 Bye!

Our first “Hello World” program

9

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel num_threads(6)

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] ./hello | cat -n

1 Hello world!

2 Hello world!

3 Hello world!

4 Hello world!

5 Hello world!

6 Hello world!

7 Bye!

Our first “Hello World” program

10

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel num_threads(6)

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] ./hello | cat -n

1 Hello world!

2 Hello world!

3 Hello world!

4 Hello world!

5 Hello world!

6 Hello world!

7 Bye!
Usually not a good idea

Fork-Join parallelism

• A single thread initially executes
the main function
• When it reaches a “parallel”

directive
• A team of threads is created
• The initial thread is part of the

team (and is the master)
• Each thread executes the parallel

region

11

#pragma omp parallel

0 1 2 3

Fork-Join parallelism

• At the end of the parallel region
• All threads enter a synchronization

barrier (rendez-vous)
• When all threads have reached

the barrier, all threads but the
master are freed

• The master thread can then
continue executing code beyond
the region

12

#pragma omp parallel

Barrier

0 1 2 3

How to introduce divergence?

13

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main ()

{

#pragma omp parallel

printf ("Hello from %d!\n", omp_get_thread_num());

printf ("Bye!\n");

return EXIT_SUCCESS;

}

[my-machine] make

gcc -Wall -fopenmp hello.c -o hello

[my-machine] OMP_NUM_THREADS=4 ./hello

Hello from 0!

Hello from 3!

Hello from 1!

Hello from 2!

Bye!

How to introduce divergence?
int main()

{

#pragma omp parallel

{

switch (omp_get_thread_num())

{

case 0:

f(); break;

case 1:

g(); break;

...

}

}

return EXIT_SUCCESS;

}

• Not a sound solution
• Parallelism is usually not linked to

the number of OpenMP threads!

• Our program is definitely not an
“incremental” evolution of a
sequential one…

14

Loop parallelism
int main ()

{

for (int i = 0; i < 10; i++)

f (i);

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be
performed in parallel

15

Loop parallelism
int main ()

{

#pragma omp parallel

{

for (int i = 0; i < 10; i++)

f (i);

}

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be
performed in parallel

• In the current code
• f(0) is executed by all threads
• So are f(1), f(2), …

16

Loop parallelism
int main ()

{

#pragma omp parallel

{

for (int i = 0; i < 10; i++)

f (i);

}

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be
performed in parallel

• In the current code
• f(0) is executed by all threads
• So are f(1), f(2), …

• We’d like to distribute the
iteration range to the thread!

17

Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

f (i);

}

return EXIT_SUCCESS;

}

• We assume that f(i) calls can be
performed in parallel

• In the current code
• f(0) is executed by all threads
• So are f(1), f(2), …

• We’d like to distribute the
iteration range to the thread!

18

Distribute iteration range

Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

[my-machine] OMP_NUM_THREADS=4 ./loop

f(0) computed by 0

f(1) computed by 0

f(8) computed by 3

f(9) computed by 3

f(6) computed by 2

f(7) computed by 2

f(2) computed by 0

f(3) computed by 1

f(4) computed by 1

f(5) computed by 1

19

Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

• By default (with gcc), the
iteration range is splitted in
chunks
• Each thread was assigned one

chunk of contiguous iterations
• That is: static partitioning

20

Loop parallelism
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

• By default (with gcc), the
iteration range is splitted in
chunks
• Each thread was assigned one

chunk of contiguous iterations
• That is: static partitioning

• Side note: an implicit barrier
takes place at the end of the
loop

21

Parallelizing computations

• How good is a static block
distribution?
• OK if the computation time of f(i)

is constant
• I.e. does not depend on the value of i

#pragma omp for schedule (static)
for (int i = 0; i < 10; i++)

f (i);

22

computation
time

i

Parallelizing computations

• What if the computation time is
linearly increasing?
• Our block distribution is no longer

relevant
• Well, using a mirror block

distribution assigning two blocks per
thread would work…

• What kind of distribution should
we use?

23

computation
time

it0 tN-1

Parallelizing computations

• What if the computation time is
linearly increasing?
• A cyclic distribution of indexes

would be a good option

24

computation
time

i
t0

#threads

Parallelizing computations

• What if the computation time is
linearly increasing?
• A cyclic distribution of indexes

would be a good option

#pragma omp for schedule (static, 1)
for (int i = 0; i < 10; i++)

f (i);

25

computation
time

i
t0 t1

#threads

Parallelizing computations

• What if the computation time is
unpredictable?
• Even the cyclic strategy may fail

26

computation
time

i

Parallelizing computations

• What if the computation time is
unpredictable?
• Dynamic strategy

• Distribute indexes in a greedy
manner

#pragma omp for schedule (dynamic)
for (int i = 0; i < 10; i++)

f (i);

27

computation
time

index

Fixing loop scheduling at run time
int main ()

{

#pragma omp parallel

{

#pragma omp for schedule (runtime)

for (int i = 0; i < 10; i++)

printf("f(%d) computed by %d\n",

i, omp_get_thread_num());

}

return EXIT_SUCCESS;

}

[my-machine] OMP_SCHEDULE=dynamic ./loop

f(0) computed by 0

f(2) computed by 1

f(3) computed by 1

f(4) computed by 1

f(5) computed by 1

f(6) computed by 1

f(7) computed by 1

f(8) computed by 1

f(1) computed by 0

f(9) computed by 2

28

Collapsing nested loops
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Problem
• We only distribute 3 i-values to

threads
• Then each threads executed the j-

loop sequentially

29

Collapsing nested loops
int main ()

{

#pragma omp parallel

{

for (int i = 0; i < 3; i++)

#pragma omp for

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Problem
• We only distribute 3 i-values to

threads
• Then each threads executed the j-

loop sequentially

• Moving #pragma omp for
between i-loop and j-loop doesn’t
help that much

30

Collapsing nested loops
int main ()

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Ideally, we’d like to perform all
the f() calls in parallel on a 12-
core machine

31

Collapsing nested loops
int main ()

{

#pragma omp parallel

{

#pragma omp for collapse (2)

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

f (i, j);

}

return EXIT_SUCCESS;

}

• Ideally, we’d like to perform all
the f() calls in parallel on a 12-
core machine

• The collapse clause distributes
all possible (i, j) pairs to threads
• Can be used in conjunction with

schedule (policy)

32

Merge two loops

