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The OpenMP standard (

* Parallel Programming Interface designed for shared-memory
multiprocessor machines
* Language extensions to C, C++ and Fortran

* Incremental parallelization
« #pragma omp directive
* Less intrusive than adding calls to libraries (e.g. POSIX threads)

* Pragmas can be ignored to easily switch back to the original sequential code
* Hmm, really?



http://www.openmp.org/

The OpenMP standard (

* Incremental parallelization

* Pragmas are like “On my honor, | swear that this code is parallel”
* Compiler will trust you! (no check)

« #pragma omp directive clause clause ..
* The more you say, the more performance you can get (hopefully)

* Seems like a piece of cake, uh?

* The OpenMP standard keeps evolving
* Architecture Review Board (Intel, IBM, AMD, Microsoft, Oracle, etc.)



http://www.openmp.org/

Our first “Hello World” program

#include <stdlib.h> [my-machine] make
#include <stdio.h> gce -Wall hello.c -o hello
#include <omp.h> [my-machine] ./hello

Hello world!
int main ()

{
#pragma omp parallel
printf ("Hello world!\n");

Bye!

printf ("Bye!\n");

return EXIT_SUCCESS;
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Our first “Hello World” program

Machine (16GB total) [my-machine] make

Package L#0 gcc -Wall -fopenmp hello.c -o hello
[my-machine] ./hello | cat-n

1 Hello world!

2 Hello world!

oo0oo 3 Hello world!

S 4 Hello world!

5 Hello world!

6 Hello world!

7 Hello world!

8 Hello world!
PU L#10 9 Hello world!
P#10
10 Hello world!
PU L#11
|
P#11 11 Hello world!

12 Hello world!

13 Bye!
Output of the “Istopo” command on my-machine
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Fork-Join parallelism

* A single thread initially executes
the main function

* When it reaches a “parallel”
directive
* A team of threads is created

* The initial thread is part of the
team (and is the )

* Each thread executes the parallel
region

H#pragma orlwp parallel




Fork-Join parallelism

* At the end of the parallel region

e All threads enter a synchronization #pragma oer parallel
barrier (rendez-vous)

e When all threads have reached
the barrier, all threads but the
master are freed Barrier

* The master thread can then
continue executing code beyond
the region




How to introduce divergence?

#include <stdlib.h> [my-machine] make

#include <stdio.h> gcc -Wall -fopenmp hello.c -o hello

[my-machine] OMP_NUM_THREADS=4 ./hello

int main () Hello from 0!
{

#pragma omp parallel

#include <omp.h>

Hello from 3!

Hello from 1!
printf ("Hello from %d!\n", omp_get_thread_num());

[
printf ("Bye!\n"); Hello from 2!

Bye!
return EXIT_SUCCESS;




How to introduce divergence?

int main()

{ * Not a sound solution

#pragma omp parallel e Parallelism is Usua”y not linked to
{ the number of OpenMP threads!

switch (omp_get_thread_num())
{
case 0: * Our program is definitely not an

f<>i_break: “incremental” evolution of a
| sequential one...

g(); break;

}
¥
return EXIT_SUCCESS;

b




Loop parallelism

int main ()

{ * We assume that f(i) calls can be

performed in parallel

for (int 1 = 0; i < 10; i++)

f (i);

return EXIT_SUCCESS;
¥
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} e Soare f(1), f(2), ...
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Loop parallelism

int main ()

{
#pragma omp parallel

{
#pragma omp for
for (int 1 = 0; 1 < 10; i++)
f (i);
b
return EXIT_SUCCESS;

b

* We assume that f(i) calls can be
performed in parallel

* In the current code
* f(0) is executed by all threads
* So are f(1), f(2), ...

* We'd like to distribute the
iteration range to the thread!




Loop parallelism

int main () [my-machine] OMP_NUM_THREADS=4 ./loop

{ f(0) computed by O
#pragma omp parallel

{
#pragma omp for
for (int i = 0; i < 10; i++) f(9) computed by 3
printf("f(%d) computed by %d\n", f(6) computed by 2

f(1) computed by O
f(8) computed by 3

¥
return EXIT_SUCCESS;

f(2) computed by O

f(3) computed by 1
f(4) computed by 1

)
)
)
)
i, omp_get_thread_num()); f(7) computed by 2
)
)
)
)

f(5) computed by 1




Loop parallelism

i”t main O By default (with gcc), the
iteration range is splitted in

#pragma omp parallel

{ chunks

#pragma omp for .
e Each thread was assigned one

for (int i = 0; 1 < 10; i++) . . .
SriNtE("F(%d) computed by Bd\n" chunk of contiguous iterations

i, omp_get_thread_num()); * That is: static partitioning

¥
return EXIT_SUCCESS;

b




Loop parallelism

i”t main O By default (with gcc), the
iteration range is splitted in

#pragma omp parallel

{ chunks

#pragma omp for .
e Each thread was assigned one

for (int i = 0; 1 < 10; i++) . . .
SriNtE("F(%d) computed by Bd\n" chunk of contiguous iterations

i, omp_get_thread_num()); * That is: static partitioning

¥
return EXIT_SUCCESS;

} * Side note: an implicit barrier
takes place at the end of the
loop




Parallelizing computations

computation

* How good is a static block time
distribution?
e OK if the computation time of f(i)

Is constant
* |.e. does not depend on the value of i

#pragma omp for schedule (static)
for (int i = 0; i < 10; i++)
f (i);




Parallelizing computations

computation

* What if the computation time is time
linearly increasing?
e Our block distribution is no longer

relevant

e Well, using a mirror block
distribution assigning two blocks per
thread would work...

 What kind of distribution should
we use?




Parallelizing computations

computation

* What if the computation time is time
linearly increasing?

* A cyclic distribution of indexes
would be a good option

#threads




Parallelizing computations

computation

* What if the computation time is time
linearly increasing?
* A cyclic distribution of indexes

would be a good option

#pragma omp for schedule (static, 1)

for (int i = 0; i < 10; i++)
£ () 1

L 4

<+—>
#threads




Parallelizing computations

computation

* What if the computation time is time
unpredictable?
* Even the cyclic strategy may fail




Parallelizing computations

computation

* What if the computation time is time
unpredictable?

* Dynamic strategy

e Distribute indexes in a greedy
manner

#pragma omp for schedule (dynamic)
for (int i = 0; i < 10; i++)
f (i);




Fixing loop scheduling at run time

int main () [my-machine] OMP_SCHEDULE=dynamic ./loop

{ f(0) computed by O
#pragma omp parallel

{

#pragma omp for schedule (runtime)
for (int 1 = 0; i < 10; i++) f(4) computed by 1
printf("f(%d) computed by %d\n", f(5) computed by 1

f(2) computed by 1
f(3) computed by 1

¥
return EXIT_SUCCESS;

f(7) computed by 1
f(8) computed by 1
f(1) computed by O

)
)
)
)
i, omp_get_thread_num()); f(6) computed by 1
)
)
)
)

f(9) computed by 2




Collapsing nested loops

wne main O * Problem

{
#pragma omp parallel * We Only distribute 3 i-values to

{ threads
#pragma omp for * Then each threads executed the j-
for (int i = @; i < 3; i++) loop sequentially
for (int j = 0; j < 4; j++)
f (i, j);
}
return EXIT_SUCCESS;




Collapsing nested loops

wne main O * Problem

{
#pragma omp parallel * We Only distribute 3 i-values to

{ threads

for (int 1 = 0; i < 3; i++) * Then each threads executed the j-
#pragma omp for loop sequentially
for (int j = 0; j < 4; j++)

B * Moving #pragma omp for

between i-loop and j-loop doesn’t
help that much

¥
return EXIT_SUCCESS;

b




Collapsing nested loops

Jorn * |deally, we’d like to perform all
the f() calls in parallel on a 12-

#pragma omp parallel

{ core machine
#pragma omp for

for (int 1 = 0; 1 < 3; i++)
for (int j = 0; j < 4; j++)
f (i, j);

}

return EXIT_SUCCESS;
}




Collapsing nested loops

Jorn * |deally, we’d like to perform all
the f() calls in parallel on a 12-

#pragma omp parallel
{ core machine

#pragma omp for collapse (2)

for {int 1 = 0; 1 < 3; i++)
for,(int § = 0; j < 4; j++) . .
L, * The collapse clause distributes
} all possible (i, j) pairs to threads

return EXIT_SUCCESS; e Can be used in conjunction with
’ schedule (policy)




