Multicore Programming:
OpenMP

Raymond Namyst

Dept. of Computer Science

University of Bordeaux, France



https://gforgeron.gitlab.io/progsys/

The OpenMP standard (

* Parallel Programming Interface designed for shared-memory
multiprocessor machines
* Language extensions to C, C++ and Fortran

* Incremental parallelization
« #pragma omp directive
* Less intrusive than adding calls to libraries (e.g. POSIX threads)

* Pragmas can be ignored to easily switch back to the original sequential code
* Hmm, really?



http://www.openmp.org/

The OpenMP standard (

* Incremental parallelization

* Pragmas are like “On my honor, | swear that this code is parallel”
* Compiler will trust you! (no check)

« #pragma omp directive clause clause ..
* The more you say, the more performance you can get (hopefully)

* Seems like a piece of cake, uh?

* The OpenMP standard keeps evolving
* Architecture Review Board (Intel, IBM, AMD, Microsoft, Oracle, etc.)



http://www.openmp.org/

Our first “Hello World” program

#include <stdlib.h> [my-machine] make
#include <stdio.h> gce -Wall hello.c -o hello
#include <omp.h> [my-machine] ./hello

Hello world!
int main ()

{
#pragma omp parallel
printf ("Hello world!\n");

Bye!

printf ("Bye!\n");

return EXIT_SUCCESS;




Our first “Hello World” program

#include <stdlib.h>
#include <stdio.h>

#include <omp.h>

int main ()
{
#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

[my-machine] make
gcc -Wall -fopenmp hello.c -o hello
[my-machine] ./hello
Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Bye!




Our first “Hello World” program

#include <stdlib.h>
#include <stdio.h>

#include <omp.h>

int main ()
{
#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

[my-machine] make
gcc -Wall -fopenmp hello.c -o hello
[my-machine] ./hello | cat-n
1 Hello world!
2 Hello world!
3 Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
8 Hello world!
9 Hello world!
10 Hello world!
11 Hello world!
12 Hello world!

13 Bye!




Our first “Hello World” program

Machine (16GB total) [my-machine] make

Package L#0 gcc -Wall -fopenmp hello.c -o hello
[my-machine] ./hello | cat-n

1 Hello world!

2 Hello world!

oo0oo 3 Hello world!

S 4 Hello world!

5 Hello world!

6 Hello world!

7 Hello world!

8 Hello world!
PU L#10 9 Hello world!
P#10
10 Hello world!
PU L#11
|
P#11 11 Hello world!

12 Hello world!

13 Bye!
Output of the “Istopo” command on my-machine




Our first “Hello World” program

#include <stdlib.h>
#include <stdio.h>

#include <omp.h>

int main ()
{
#pragma omp parallel

printf ("Hello world!\n");

printf ("Bye!\n");

return EXIT_SUCCESS;

[my-machine] make
gcc -Wall -fopenmp hello.c -o hello
[my-machine] OMP_NUM_THREADS=4 ./hello | cat -n
1 Hello world!
2 Hello world!
3 Hello world!
4 Hello world!

5 Bye!




Our first “Hello World” program

#include <stdlib.h> [my-machine] make
#include <stdio.h> gcc -Wall -fopenmp hello.c -o hello

#include <omp.h> .
[my-machine] ./hello | cat -n

int main () 1 Hello world!

{

#pragma omp parallel num_threads(6)
printf ("Hello world!\n");

Hello world!
Hello world!
printf ("Bye!\n");

Hello world!

return EXIT_SUCCESS; Hello world!

2
3
4 Hello world!
)
6
7

Bye!




Our first “Hello World” program

#include <stdlib.h> [my-machine] make
#include <stdio.h> gcc -Wall -fopenmp hello.c -o hello

#include <omp.h> .
[my-machine] ./hello | cat -n

int main () 1 Hello world!

{

#pragma omp parallel num_threads(6)
printf ("Hello world!\n");

Hello world!
Hello world!
printf ("Bye!\n");

Hello world!

return EXIT_SUCCESS; Hello world!

2
3
4 Hello world!
)
6
7

Bye!




Fork-Join parallelism

* A single thread initially executes
the main function

* When it reaches a “parallel”
directive
* A team of threads is created

* The initial thread is part of the
team (and is the )

* Each thread executes the parallel
region

H#pragma orlwp parallel




Fork-Join parallelism

* At the end of the parallel region

e All threads enter a synchronization #pragma oer parallel
barrier (rendez-vous)

e When all threads have reached
the barrier, all threads but the
master are freed Barrier

* The master thread can then
continue executing code beyond
the region




How to introduce divergence?

#include <stdlib.h> [my-machine] make

#include <stdio.h> gcc -Wall -fopenmp hello.c -o hello

[my-machine] OMP_NUM_THREADS=4 ./hello

int main () Hello from 0!
{

#pragma omp parallel

#include <omp.h>

Hello from 3!

Hello from 1!
printf ("Hello from %d!\n", omp_get_thread_num());

[
printf ("Bye!\n"); Hello from 2!

Bye!
return EXIT_SUCCESS;




How to introduce divergence?

int main()

{ * Not a sound solution

#pragma omp parallel e Parallelism is Usua”y not linked to
{ the number of OpenMP threads!

switch (omp_get_thread_num())
{
case 0: * Our program is definitely not an

f<>i_break: “incremental” evolution of a
| sequential one...

g(); break;

}
¥
return EXIT_SUCCESS;

b




Loop parallelism

int main ()

{ * We assume that f(i) calls can be

performed in parallel

for (int 1 = 0; i < 10; i++)

f (i);

return EXIT_SUCCESS;
¥




Loop parallelism

int main () * We assume that f(i) calls can be

#pragna omp parallel performed in parallel
{

for (int 1 = 0; i < 10; i++)
f (i) * In the current code
I

return EXTT SUCCESS: * f(0) is executed by all threads
} e Soare f(1), f(2), ...




Loop parallelism

int main () * We assume that f(i) calls can be

#pragna omp parallel performed in parallel
{

for (int i = 0; 1 < 10; i++)
f (i) * In the current code
}
 f(0) is executed by all threads

return EXIT_SUCCESS;

} e Soare f(1), f(2), ...

* We'd like to distribute the
iteration range to the thread!




Loop parallelism

int main ()

{
#pragma omp parallel

{
#pragma omp for
for (int 1 = 0; 1 < 10; i++)
f (i);
b
return EXIT_SUCCESS;

b

* We assume that f(i) calls can be
performed in parallel

* In the current code
* f(0) is executed by all threads
* So are f(1), f(2), ...

* We'd like to distribute the
iteration range to the thread!




Loop parallelism

int main () [my-machine] OMP_NUM_THREADS=4 ./loop

{ f(0) computed by O
#pragma omp parallel

{
#pragma omp for
for (int i = 0; i < 10; i++) f(9) computed by 3
printf("f(%d) computed by %d\n", f(6) computed by 2

f(1) computed by O
f(8) computed by 3

¥
return EXIT_SUCCESS;

f(2) computed by O

f(3) computed by 1
f(4) computed by 1

)
)
)
)
i, omp_get_thread_num()); f(7) computed by 2
)
)
)
)

f(5) computed by 1




Loop parallelism

i”t main O By default (with gcc), the
iteration range is splitted in

#pragma omp parallel

{ chunks

#pragma omp for .
e Each thread was assigned one

for (int i = 0; 1 < 10; i++) . . .
SriNtE("F(%d) computed by Bd\n" chunk of contiguous iterations

i, omp_get_thread_num()); * That is: static partitioning

¥
return EXIT_SUCCESS;

b




Loop parallelism

i”t main O By default (with gcc), the
iteration range is splitted in

#pragma omp parallel

{ chunks

#pragma omp for .
e Each thread was assigned one

for (int i = 0; 1 < 10; i++) . . .
SriNtE("F(%d) computed by Bd\n" chunk of contiguous iterations

i, omp_get_thread_num()); * That is: static partitioning

¥
return EXIT_SUCCESS;

} * Side note: an implicit barrier
takes place at the end of the
loop




Parallelizing computations

computation

* How good is a static block time
distribution?
e OK if the computation time of f(i)

Is constant
* |.e. does not depend on the value of i

#pragma omp for schedule (static)
for (int i = 0; i < 10; i++)
f (i);




Parallelizing computations

computation

* What if the computation time is time
linearly increasing?
e Our block distribution is no longer

relevant

e Well, using a mirror block
distribution assigning two blocks per
thread would work...

 What kind of distribution should
we use?




Parallelizing computations

computation

* What if the computation time is time
linearly increasing?

* A cyclic distribution of indexes
would be a good option

#threads




Parallelizing computations

computation

* What if the computation time is time
linearly increasing?
* A cyclic distribution of indexes

would be a good option

#pragma omp for schedule (static, 1)

for (int i = 0; i < 10; i++)
£ () 1

L 4

<+—>
#threads




Parallelizing computations

computation

* What if the computation time is time
unpredictable?
* Even the cyclic strategy may fail




Parallelizing computations

computation

* What if the computation time is time
unpredictable?

* Dynamic strategy

e Distribute indexes in a greedy
manner

#pragma omp for schedule (dynamic)
for (int i = 0; i < 10; i++)
f (i);




Fixing loop scheduling at run time

int main () [my-machine] OMP_SCHEDULE=dynamic ./loop

{ f(0) computed by O
#pragma omp parallel

{

#pragma omp for schedule (runtime)
for (int 1 = 0; i < 10; i++) f(4) computed by 1
printf("f(%d) computed by %d\n", f(5) computed by 1

f(2) computed by 1
f(3) computed by 1

¥
return EXIT_SUCCESS;

f(7) computed by 1
f(8) computed by 1
f(1) computed by O

)
)
)
)
i, omp_get_thread_num()); f(6) computed by 1
)
)
)
)

f(9) computed by 2




Collapsing nested loops

wne main O * Problem

{
#pragma omp parallel * We Only distribute 3 i-values to

{ threads
#pragma omp for * Then each threads executed the j-
for (int i = @; i < 3; i++) loop sequentially
for (int j = 0; j < 4; j++)
f (i, j);
}
return EXIT_SUCCESS;




Collapsing nested loops

wne main O * Problem

{
#pragma omp parallel * We Only distribute 3 i-values to

{ threads

for (int 1 = 0; i < 3; i++) * Then each threads executed the j-
#pragma omp for loop sequentially
for (int j = 0; j < 4; j++)

B * Moving #pragma omp for

between i-loop and j-loop doesn’t
help that much

¥
return EXIT_SUCCESS;

b




Collapsing nested loops

Jorn * |deally, we’d like to perform all
the f() calls in parallel on a 12-

#pragma omp parallel

{ core machine
#pragma omp for

for (int 1 = 0; 1 < 3; i++)
for (int j = 0; j < 4; j++)
f (i, j);

}

return EXIT_SUCCESS;
}




Collapsing nested loops

Jorn * |deally, we’d like to perform all
the f() calls in parallel on a 12-

#pragma omp parallel
{ core machine

#pragma omp for collapse (2)

for {int 1 = 0; 1 < 3; i++)
for,(int § = 0; j < 4; j++) . .
L, * The collapse clause distributes
} all possible (i, j) pairs to threads

return EXIT_SUCCESS; e Can be used in conjunction with
’ schedule (policy)




