
Operating Systems:
Process Management

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/se/

1

https://gforgeron.gitlab.io/se/

Structure of an OS

- 2

KERNEL
(process scheduling, memory management, I/O)

Hardware

API: system calls

sshd syslogd

processes

firefox xterm bash

code
+

libraries

Processes

• Processes are lively instances of programs
• Program = binary code stored on disk
• Multiple processes can run the same program independently

• Process = Address Space + Execution Context
• Address space

• Set of visible memory addresses
• Code, Data, Heap, Stack, Shared Libraries, etc.

• Execution Context
• Stack + content of processor registers

3

Address Space

• Typically composed of distinct
memory regions
• A region being a contiguous range

of valid addresses

4

Address Space

• Typically composed of the
following regions
• Code

• (aka text segment)
• Contains executable instructions
• Usually, a read-only region

• It also hosts constants
• E.g. constant strings

• “hello world!”

5

Code

Address Space

• Typically composed of the
following regions
• Code
• Data

• Allocation of static variables
• int i;

6

Code

Data

Address Space

• Typically composed of the
following regions
• Code
• Data

• Allocation of static variables
• Actually two segments

• Initialized data (data segment)
• float pi = 3.1415;
• Stored in object file

• Uninitialized data (bss segment)
• int i;
• Only segment size is stored in

object file

7

Code

data

bss

Address Space

• Typically composed of the
following regions
• Code
• Data
• Heap

• Dynamic allocations
• malloc/free

• Managed by libc
• Dynamic expansion
• OS cannot (always) detect accesses

outside malloc’ed buffers…

8

Code

Data

Heap

Address Space

• Typically composed of the
following regions
• Code
• Data
• Heap
• Stack

• Allocation of function parameters
and local variables

• Automatic growth
• 8 MiB default limit under Linux

9

Stack

Code

Data

Heap

Address Space

• Typically composed of the
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• libc, libm, libGL, etc.
• Mapped on demand

10

Stack

Code

Data

Heap

Libs

Address Space

• Typically composed of the
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• libc, libm, libGL, etc.
• Mapped on demand

11

Stack

Code

Data

Heap

Libs

?

Address Space

• Typically composed of the
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• Attempt to access memory at an
invalid address leads to a
Segmentation Fault

12

Stack

Code

Data

Heap

Libs

Invalid addresses

Address Space

• Typically composed of the
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• Attempt to access memory at an
invalid address leads to a
Segmentation Fault

13

Stack

Code

Data

Heap

Libs

Invalid addresses

Inspecting Memory Regions under Linux
[jolicoeur] cat /proc/self/maps

55ad0226e000-55ad02276000 r-xp 00000000 08:01 1573289 /bin/cat

55ad02475000-55ad02476000 r--p 00007000 08:01 1573289 /bin/cat

55ad02476000-55ad02477000 rw-p 00008000 08:01 1573289 /bin/cat

55ad02c0d000-55ad02c2e000 rw-p 00000000 00:00 0 [heap]

7f9a1646b000-7f9a1669e000 r--p 00000000 08:01 7079259 /usr/lib/locale/locale-archive

7f9a166a3000-7f9a16838000 r-xp 00000000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16838000-7f9a16a38000 ---p 00195000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16a38000-7f9a16a3c000 r--p 00195000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16a3c000-7f9a16a3e000 rw-p 00199000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16a43000-7f9a16a66000 r-xp 00000000 08:01 8128192 /lib/x86_64-linux-gnu/ld-2.24.so

7f9a16c66000-7f9a16c67000 r--p 00023000 08:01 8128192 /lib/x86_64-linux-gnu/ld-2.24.so

7f9a16c67000-7f9a16c68000 rw-p 00024000 08:01 8128192 /lib/x86_64-linux-gnu/ld-2.24.so

7ffeaea77000-7ffeaea98000 rw-p 00000000 00:00 0 [stack]

14

Process Attributes

• In addition to Address Space
description, the kernel stores the
following information about
each process:
• Process ID (pid)
• Priority
• User ID (real/effective)
• File descriptor table
• Signal handling table
• Space for registers backup
• Etc.

- 15

firefox

Kernel
space

attributes

Process Attributes

- 16

KERNEL

firefox bash

Process
list

firefox

Processes can be
represented this way:

Kernel
space

attributes

But reality is (obviously) more like:

Kernel
space

attributes

time

actor

Process Creation

• The Kernel originally spawns one
process (P0)
• This process will in turn create

several processes (background
DAEMONs)
• Using a system call (what else?)

Kernel
mode

17

P0

time

actor

Process Creation

18

Kernel
mode

P0

KERNEL

P0

Process
list

time

actor

Process Creation

19

Kernel
mode sys_fork

fork
syscallP0

KERNEL

P0

Process
list

time

actor

Process Creation

20

Kernel
mode sys_fork

fork
syscallP0

P1
P1 is ready

KERNEL

P0

Process
list

P1

time

actor

Process Creation

21

Kernel
mode sys_fork

fork
syscallP0

P1
P1 is ready

KERNEL

P0

Process
list

P1

?

time

actor

Process Creation

22

Kernel
mode sys_fork

fork
syscallP0

P1
P1 is ready

syscall
ret

KERNEL

P0

Process
list

P1

time

actor

Process Creation

23

Kernel
mode sys_fork

fork
syscallP0

P1
P1 is ready

syscall
ret

sys_timer

KERNEL

P0

Process
list

P1

time

actor

Process Scheduling

• At some point, the kernel must
decide “which process should
run now?”

= Process Scheduling

• NB
• A CPU executes one program at a

time
• There can be at most

#CPU processes
running simultaneously

Kernel
mode sys_fork

fork
syscall

24

P0

P1
P1 is ready

syscall
ret

sys_timer

?

time

actor

Kernel

P0

P1

Process Scheduling

25

time

actor

Kernel

P0

P1

Process Scheduling (close up)

26

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

27

The interrupt handler first saves registers on stack

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

28

Scheduling decision
(Should I stay or should I go?)

?

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

29

I‘m staying!

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

30

The interrupt handler restores registers just before iret

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

31

Ok, I’m leaving…

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

32

Context Switch

time

actor

Kernel

P0

P1

Process Scheduling (close-up)

33

Context Switch

Context Switching

• switch_to (Pprev, Pnext)
• Save Pprev registers
• Restore Pnext registers

• Pprev becomes Pnext
• Pnext resumes execution and

returns from “one” switch_to
call

• Pprev will resume execution when
some process will switch back to it

kernel_f()

{

 …

 switch_to (prev, next);

 …

}

kernel_g()

{

 …

 switch_to (prev, next);

 …

}

34

35

Process States

- 36

Just
Created

Process States

- 37

Just
Created

Ready

Process States

- 38

Just
Created

Ready Running

elected

Process States

- 39

Just
Created

Ready Running

elected

Running

Process States

- 40

Just
Created

Ready Running

elected

Running

iret

Process States

- 41

Just
Created

Ready Running

elected

Running

iret syscall / interrupt / exception

Process States

- 42

Just
Created

Ready Running

elected

preempted

Running

iret syscall / interrupt / exception

Process States

- 43

Just
Created

Ready Running Blocked

elected

preempted

forced to wait

Running

iret syscall / interrupt / exception

Process States

- 44

Just
Created

Ready Running Blocked

elected

preempted

forced to wait

Awakened
(e.g. completion of I/O operation)

Running

iret syscall / interrupt / exception

Process States

- 45

Just
Created

Ready Running Blocked

elected

preempted

forced to wait

Awakened
(e.g. completion of I/O operation)

Running

iret syscall / interrupt / exception

Zombie

exit

Oh, by the way…

- 46

Running

Running

iret

This is the exact moment at which
pending signals are delivered

47

time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

Kernel
mode

48

emacs

firefox

running

ready

time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call

Kernel
mode sys_read

read
syscall

49

emacs

firefox

time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call
• Most of the time, keyboard buffer

is emptyKernel
mode sys_read

read
syscall

50

emacs

firefox

time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call
• Most of the time, keyboard buffer

is emptyKernel
mode sys_read

read
syscall

51

emacs

No data available, so emacs must go into the blocked state

firefox

time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call
• Most of the time, keyboard buffer

is emptyKernel
mode sys_read

read
syscall

52

emacs

firefox

switch to a ready process (firefox)

time

actor

Handling of Blocking Calls

53

Kernel
mode sys_read

read
syscallemacs

firefox

switch to a ready process

time

actor

Handling of Blocking Calls

54

Kernel
mode sys_read

read
syscallemacs

firefox

keyboard
interrupt

switch to a ready process

time

actor

Handling of Blocking Calls

55

Kernel
mode sys_read

read
syscallemacs

firefox

keyboard
interrupt

kbd interrupt handlerswitch to a ready process

time

actor

Handling of Blocking Calls

56

Kernel
mode sys_read

read
syscallemacs

firefox

keyboard
interrupt

emacs is
ready again

kbd interrupt handlerswitch to a ready process

time

actor

Handling of Blocking Calls

57

Kernel
mode sys_read

read
syscallemacs

firefox

keyboard
interrupt

kbd interrupt handlerswitch to a ready process
?

emacs is
ready again

time

actor

Handling of Blocking Calls

58

Kernel
mode sys_read

read
syscallemacs

firefox

keyboard
interrupt

kbd interrupt handlerswitch to a ready process

emacs is
ready again

time

actor

Handling of Blocking Calls

59

Kernel
mode sys_read

read
syscallemacs

firefox

keyboard
interrupt

kbd interrupt handlerswitch to a ready process

Fair?
🤔

emacs is
ready again

Scheduling

• General goal of a process scheduler
• Optimize CPU usage and maximize user happiness

• Each process has a fair access to the CPU
• CPU is always running at 100%
• Responsiveness of interactive processes is optimal
• Completion time of long-running processes is minimal
• Etc.

• Satisfying these rules altogether is impossible
• There is no such thing as a Universal Soldier Scheduler
• Scheduling heavily depends on OS type

• Interactive
• Real-time
• Batch server

60

Scheduling in an interactive world

• Most critical property
• Responsiveness of interactive processes is optimal

• Interactive processes
• Processes reacting to I/O events

• Scheduling strategy
• Scheduling algorithm

• Election of next running process among the pool of ready ones
• Places where the scheduling code is executed

61

The FIFO Scheduler

• Running process = head of ready
list
• Removed only when blocking or

terminating
• No periodic preemption

• Pros
• ?
• ?

• Cons
• ?

62

ready
 list

running

The FIFO Scheduler

• Running process = head of ready
list
• Removed only when blocking or

terminating
• No periodic preemption

• Pros
• Very small overhead
• O(1) election algorithm

• Cons
• Starvation

63

ready
 list

running

The Round-Robin Scheduler

• FIFO + preemption
• At each timer interrupt, the

running process yields CPU to its
successor

• Pros
• ?
• ?

• Cons
• ?

64

running

The Round-Robin Scheduler

• FIFO + preemption
• At each timer interrupt, the

running process yields CPU to its
successor

• Pros
• No starvation
• O(1) scheduler

• Cons
• No priority

65

running

The (strict) Priority Scheduler

• Used in Real-time systems
• One FIFO list per priority level

• Running process = head of
highest non-empty priority list

• Pros
• O(#priorities) scheduler

• Cons
• ?

66

max prio

running

min prio

The (strict) Priority Scheduler

• Used in Real-time systems
• One FIFO list per priority level

• Running process = head of highest
non-empty priority list

• Pros
• O(#priorities) scheduler

• Cons
• How to assign priorities to processes?

67

max prio

emacs

min prio gcc

Assigning dynamic priorities to processes

• We’d like to assign higher priorities
to ”cool” processes
• Which need to react quickly to

events?
• Which perform a lot of I/O?
• Which won’t use a full quantum of

time (10ms) next time?

68

max prio

?

min prio

69

Assigning dynamic priorities to processes

• We’d like to assign higher priorities
to ”cool” processes
• Which need to react quickly to

events?
• Which perform a lot of I/O?
• Which won’t use a full quantum of

time (10ms) next time?

• How do we know?
• People can change…

• “If I can change, and you can change,
everybody can change!”
[Rocky Balboa, 1985]

70

max prio

?

min prio

Predicting the Future ?

71

Predicting the Future

• By looking at the past!
• If a process kept behaving well so far…

…it will probably do so next time we schedule it!

72

Predicting the Future

• By looking at the past!
• If a process kept behaving well so

far…
…it will probably do so next time
we schedule it!

• P0 looks more friendly than P1

73

P0

P1

Predicting the Future

• By looking at the past!
• If a process kept behaving well so

far…
…it will probably do so next time
we schedule it!

• P0 looks more friendly than P1
• Really?

74

P0

P1

Predicting the Future

• By looking at the past!
• If a process kept behaving well so

far…
…it will probably do so next time
we schedule it!

• P0 looks more friendly than P1
• Really?
• Can we forgive P0?

75

P0

P1

Estimating duration of the next quantum

• Tn: CPU utilization observed at step n
• En: estimation of the CPU utilization time at step n

• 𝐸!

• 𝛼 = 0
• Fixed, a priori estimation

• 𝛼 = 1
• We only look at the last period

• 𝛼 = !
"

• 𝐸" = 𝑇#
• 𝐸$ =

"
$
𝑇" +

• 𝐸% =
"
$

76

Estimating duration of the next quantum

• Tn: CPU utilization observed at step n
• En: estimation of the CPU utilization time at step n

• 𝐸! = α 𝑇!&" + 1 − α 𝐸!&"

• 𝛼 = 0
• Fixed, a priori estimation

• 𝛼 = 1
• We only look at the last period

• 𝛼 = !
"

• 𝐸" = 𝑇#
• 𝐸$ =

"
$
𝑇" +

• 𝐸% =
"
$

77

Estimating duration of the next quantum

• Tn: CPU utilization observed at step n
• En: estimation of the CPU utilization time at step n

• 𝐸! = α 𝑇!&" + 1 − α 𝐸!&"

• 𝛼 = 0
• Fixed, a priori estimation

• 𝛼 = 1
• We only look at the last period

• 𝛼 = !
"

• 𝐸" = 𝑇#
• 𝐸$ =

"
$
𝑇" +

"
$
𝑇#

• 𝐸% =
"
$
𝑇$ +

"
'
𝑇" +

"
'
𝑇#

78

From Estimation to Priority

• OK, we can predict how long
each process will run next time it
is scheduled
• Which process do we choose?

• Try to maximize average
happiness!
• Think about queues at the

supermarket!

79

From Estimation to Priority

• To maximize average happiness
• We should minimize average

waiting time
• Schedule shortest jobs first!

80

From Estimation to Priority

• To maximize average happiness
• We should minimize average

waiting time
• Schedule shortest jobs first!

• Priority should be inversely
proportional to 𝐸!
• Interactive Operating Systems

schedulers try, more or less, to
follow this strategy

81

Strategy used in Linux 2.4.x kernels

• Credits are assigned to processes, based on their fixed priority
• Sort of “pocket money”

• To run on the CPU, a process must spend money
• No more money = no CPU

• At some point, no more ready processes have money left
• The kernel restarts a new epoch and redistributes credits

82

Strategy used in Linux 2.4.x kernels

• Credits are assigned to processes, based on their fixed priority
• Let us take a concrete, simple example with 3 processes
• Initially:

• P0 has 4 credits
• P1 has 3 credits
• P2 has 3 credits

83

Strategy used in Linux 2.4.x kernels

• Credits are assigned to processes, based on their fixed priority
• Let us take a concrete, simple example with 3 processes
• Initially:

• P0 has 4 credits
• P1 has 3 credits
• P2 has 3 credits

• Rich people are usually privileged, aren’t they?
• So P0 will be the next running process

84

Strategy used in Linux 2.4.x kernels

85

time

Kernel

P0

P1

P2

4

3

3

Strategy used in Linux 2.4.x kernels

86

time

Kernel

P0

P1

P2

4

3

3

Strategy used in Linux 2.4.x kernels

87

time

Kernel

P0

P1

P2

4 3

3

3

Strategy used in Linux 2.4.x kernels

88

time

Kernel

P0

P1

P2

4 3

3

3

Strategy used in Linux 2.4.x kernels

89

time

Kernel

P0

P1

P2

4 3 2

3

3

Strategy used in Linux 2.4.x kernels

90

time

Kernel

P0

P1

P2

4 3 2

3

3

Strategy used in Linux 2.4.x kernels

91

time

Kernel

P0

P1

P2

4 3 2

3 2

3

Strategy used in Linux 2.4.x kernels

92

time

Kernel

P0

P1

P2

4 3 2

3 2

3

Strategy used in Linux 2.4.x kernels

93

time

Kernel

P0

P1

P2

4 3 2

3 2

3 2

Strategy used in Linux 2.4.x kernels

94

time

Kernel

P0

P1

P2

4 3 2

3 2

3 2

Strategy used in Linux 2.4.x kernels

95

time

Kernel

P0

P1

P2

4 3 2

3 2

3 2 1

Strategy used in Linux 2.4.x kernels

96

time

Kernel

P0

P1

P2

4 3 2

3 2

3 2 1

Strategy used in Linux 2.4.x kernels

97

time

Kernel

P0

P1

P2

4 3 2

3 2 1

3 2 1

Strategy used in Linux 2.4.x kernels

98

time

Kernel

P0

P1

P2

4 3 2

3 2 1

3 2 1

Strategy used in Linux 2.4.x kernels

99

time

Kernel

P0

P1

P2

4 3 2 1

3 2 1

3 2 1

Strategy used in Linux 2.4.x kernels

100

time

Kernel

P0

P1

P2

4 3 2 1

3 2 1

3 2 1

Strategy used in Linux 2.4.x kernels

101

time

Kernel

P0

P1

P2

4 3 2 1 0

3 2 1

3 2 1

Strategy used in Linux 2.4.x kernels

102

time

Kernel

P0

P1

P2

4 3 2 1 0

3 2 1

3 2 1

Strategy used in Linux 2.4.x kernels

103

time

Kernel

P0

P1

P2

4 3 2 1 0

3 2 1 0

3 2 1

Strategy used in Linux 2.4.x kernels

104

time

Kernel

P0

P1

P2

4 3 2 1 0

3 2 1 0

3 2 1

Strategy used in Linux 2.4.x kernels

105

time

Kernel

P0

P1

P2

4 3 2 1 0

3 2 1 0

3 2 1 0

?

Strategy used in Linux 2.4.x kernels

106

time

Kernel

P0

P1

P2

4 3 2 1 0

3 2 1 0

3 2 1 0

?
The Epoch is over!

Strategy used in Linux 2.4.x kernels

• When all “ready processes” are short of credits, Linux starts a new
Epoch
• Money is credited back to all processes
• The same way you give money to your kids every month…

• Duration of an Epoch is unknown, though

107

Strategy used in Linux 2.4.x kernels

• When all “ready processes” are short of credits, Linux starts a new
Epoch
• Money is credited back to all processes
• The same way you give money to your kids every month…

• Duration of an Epoch is unknown, though

• Uh, wait… Really?
• What if a process did not spend all its credits?

• In other words: one of your kids is secretly saving money…

108

Strategy used in Linux 2.4.x kernels

• Uh, wait… Really?
• What if a process did not spend all its credits?

• In other words: one of your kids is secretly saving money…

109

Strategy used in Linux 2.4.x kernels

• To avoid infinite accumulation of credits
• One solution is to introduce a tax!

• At the beginning of a new Epoch, each process receives
• to_credits(priority) + remaining_credits/2

110

Strategy used in Linux 2.4.x kernels

• To avoid infinite accumulation of credits
• One solution is to introduce a tax!

• At the beginning of a new Epoch, each process receives
• to_credits(priority) + remaining_credits/2

• In the worst case, a process can accumulate
• C
• C + C/2
• C + C/2 + C/4
• C + C/2 + C/4 + C/8
• C + C/2 + C/4 + C+8 + …

• Bounded by 2C

111

Strategy used in Linux 2.4.x kernels

• We’re now ready to explore how this is implemented!

112

Scheduling on multicore machines

• Each core runs the scheduler asynchronously
• Timer interrupts not necessarily synchronized

• The ready list can be
• Shared by all cores

• How to prevent multiple cores from choosing the same process simultaneously?
• Distributed among cores

• How to balance ready threads fairly? How often?

• Local scheduling decisions can require “reschedule” operations on
other cores

113

Processes and Threads

• Threads = Execution context

• Process = Thread + Address
Space

• Several threads can share the
same address space

114

Threads

Process featuring
2 threads

Processes and Threads
int main (int argc, char *argv[])

{
 pthread_t pid;

 pthread_create (&pid, NULL, func, “thread”);

 printf ("Hello from main\n");

 pthread_join (pid, NULL);

 return 0;

}

115

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int NBTHREADS = 1;

void *func (void *arg)

{

 printf ("Hello from %s\n", arg);

 return NULL;

}

Processes and Threads

• Some (daemons) threads only
run inside the kernel

• Modern kernels manage only
threads

116

Processes and Threads: the Big Picture

- 117

KERNEL

P1 P2

Thread
list

P0

Processes and Threads: the Big Picture

- 118

KERNEL

P1 P2

Thread
list

P0

Memory
Maps

Race conditions

• Threads can access the same data simultaneously
• May lead to undefined behavior, data corruption, …
• Think about

• Linked lists, graphs, hash tables
• Structures where several fields must be updated consistently
• Or just integers…

• When executing kernel code, processes share data as well
• So the kernel must enforce synchronization

119

Race conditions

120

volatile int n = 0;

for (int i = 0; i < 100; i++)
n++;

for (int i = 0; i < 100; i++)
n++;

printf ("n = %d\n", n);

𝑛 = 200 ?

pthread_join

Race conditions

121

volatile int n = 0;

for (int i = 0; i < 100; i++)
n++;

for (int i = 0; i < 100; i++)
n++;

printf ("n = %d\n", n);

pthread_join

𝑛 ∈ [100,200] ?

Possible scenario
load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

122

n : 0

Possible scenario

load @n, r1
inc r1

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

123

n : 0

context switch

Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

99x

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

124

n : 0 99

Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

99x

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

125

n : 0 99 1

Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

99x

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

126

n : 0 99 1

Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

99x

99x

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

127

n : 0 99 1 100

Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

99x

99x

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

128

n : 0 99 1 100 2

Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

99x

99x

load @n, r1 ; load from memory
inc r1 ; increment register
store r1, @n ; store in memory

n++ ⬄

129

n : 0 99 1 100 2
𝑛 ∈ [2,200] !

Race conditions

• Even the simple ++ operator is not an atomic operation
• So we must prevent multiple threads to execute this operation concurrently!

• To do so, we need synchronization tools
• This is the topic of the fascinating next chapter! J

130

Additional resources
available on

http://gforgeron.gitlab.io/se/

131

http://gforgeron.gitlab.io/se/

