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Processes

• Processes are lively instances of programs
• Program = binary code stored on disk
• Multiple processes can run the same program independently

• Process = Address Space + Execution Context
• Address space

• Set of visible memory addresses
• Code, Data, Heap, Stack, Shared Libraries, etc.

• Execution Context
• Stack + content of processor registers
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Address Space

• Typically composed of distinct 
memory regions
• A region being a contiguous range 

of valid addresses

4



Address Space

• Typically composed of the 
following regions
• Code

• (aka text segment)
• Contains executable instructions
• Usually, a read-only region

• It also hosts constants
• E.g. constant strings

• “hello world!”
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Address Space

• Typically composed of the 
following regions
• Code
• Data

• Allocation of static variables
• int i;
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Address Space

• Typically composed of the 
following regions
• Code
• Data

• Allocation of static variables
• Actually two segments

• Initialized data (data segment)
• float pi = 3.1415;
• Stored in object file

• Uninitialized data (bss segment)
• int i;
• Only segment size is stored in 

object file
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Address Space

• Typically composed of the 
following regions
• Code
• Data
• Heap

• Dynamic allocations
• malloc/free

• Managed by libc
• Dynamic expansion
• OS cannot (always) detect accesses 

outside malloc’ed buffers…
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Address Space

• Typically composed of the 
following regions
• Code
• Data
• Heap
• Stack

• Allocation of function parameters 
and local variables

• Automatic growth
• 8 MiB default limit under Linux
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Address Space

• Typically composed of the 
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• libc, libm, libGL, etc.
• Mapped on demand
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Address Space

• Typically composed of the 
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• libc, libm, libGL, etc.
• Mapped on demand
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Address Space

• Typically composed of the 
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• Attempt to access memory at an 
invalid address leads to a 
Segmentation Fault
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Address Space

• Typically composed of the 
following regions
• Code
• Data
• Heap
• Stack
• Shared Libraries

• Attempt to access memory at an 
invalid address leads to a 
Segmentation Fault
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Inspecting Memory Regions under Linux
[jolicoeur] cat /proc/self/maps

55ad0226e000-55ad02276000 r-xp 00000000 08:01 1573289 /bin/cat

55ad02475000-55ad02476000 r--p 00007000 08:01 1573289 /bin/cat

55ad02476000-55ad02477000 rw-p 00008000 08:01 1573289 /bin/cat

55ad02c0d000-55ad02c2e000 rw-p 00000000 00:00 0 [heap]

7f9a1646b000-7f9a1669e000 r--p 00000000 08:01 7079259 /usr/lib/locale/locale-archive

7f9a166a3000-7f9a16838000 r-xp 00000000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16838000-7f9a16a38000 ---p 00195000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16a38000-7f9a16a3c000 r--p 00195000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16a3c000-7f9a16a3e000 rw-p 00199000 08:01 8131225 /lib/x86_64-linux-gnu/libc-2.24.so

7f9a16a43000-7f9a16a66000 r-xp 00000000 08:01 8128192 /lib/x86_64-linux-gnu/ld-2.24.so

7f9a16c66000-7f9a16c67000 r--p 00023000 08:01 8128192 /lib/x86_64-linux-gnu/ld-2.24.so

7f9a16c67000-7f9a16c68000 rw-p 00024000 08:01 8128192 /lib/x86_64-linux-gnu/ld-2.24.so

7ffeaea77000-7ffeaea98000 rw-p 00000000 00:00 0 [stack]
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Process Attributes

• In addition to Address Space 
description, the kernel stores the 
following information about 
each process:
• Process ID (pid)
• Priority
• User ID (real/effective)
• File descriptor table
• Signal handling table
• Space for registers backup
• Etc.
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Process Attributes
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time

actor

Process Creation

• The Kernel originally spawns one 
process (P0)
• This process will in turn create 

several processes (background 
DAEMONs)
• Using a system call (what else?)

Kernel
mode
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Process Creation
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time

actor

Process Creation
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time
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time

actor

Process Creation
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time

actor

Process Creation
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Process Creation

23

Kernel
mode sys_fork 

fork
syscallP0

P1
P1 is ready

syscall
ret

sys_timer 

KERNEL

P0

Process
list

P1



time

actor

Process Scheduling

• At some point, the kernel must 
decide “which process should 
run now?”

= Process Scheduling

• NB
• A CPU executes one program at a 

time
• There can be at most

#CPU processes 
running simultaneously

Kernel
mode sys_fork 

fork
syscall
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time

actor

Kernel

P0

P1

Process Scheduling (close up)

26



time

actor
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Context Switching

• switch_to (Pprev, Pnext)
• Save Pprev registers
• Restore Pnext registers

• Pprev becomes Pnext
• Pnext resumes execution and 

returns from “one” switch_to 
call

• Pprev will resume execution when 
some process will switch back to it

kernel_f()

{

  …

  switch_to (prev, next);

  …

}

kernel_g()

{

  …

  switch_to (prev, next);

  …

}
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Process States
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- 39

Just 
Created

Ready Running

elected

Running



Process States

- 40

Just 
Created

Ready Running

elected

Running

iret



Process States

- 41

Just 
Created

Ready Running

elected

Running

iret syscall / interrupt / exception



Process States

- 42

Just 
Created

Ready Running

elected

preempted

Running

iret syscall / interrupt / exception



Process States
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Process States

- 45

Just 
Created

Ready Running Blocked

elected

preempted

forced to wait

Awakened
(e.g. completion of I/O operation)

Running

iret syscall / interrupt / exception

Zombie

exit



Oh, by the way…
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Running

Running

iret

This is the exact moment at which
pending signals are delivered
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actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

Kernel
mode
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time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call

Kernel
mode sys_read 

read
syscall
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time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call
• Most of the time, keyboard buffer 

is emptyKernel
mode sys_read 

read
syscall
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time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call
• Most of the time, keyboard buffer 

is emptyKernel
mode sys_read 

read
syscall
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time

actor

Handling of Blocking Calls

• Let’s say emacs is running
• Emacs spends its life

• Waiting for keyboard input
• Refreshing display

• Waiting for keyboard input
• read system call
• Most of the time, keyboard buffer 

is emptyKernel
mode sys_read 

read
syscall
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Handling of Blocking Calls
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Scheduling

• General goal of a process scheduler
• Optimize CPU usage and maximize user happiness

• Each process has a fair access to the CPU
• CPU is always running at 100%
• Responsiveness of interactive processes is optimal
• Completion time of long-running processes is minimal
• Etc.

• Satisfying these rules altogether is impossible
• There is no such thing as a Universal Soldier Scheduler
• Scheduling heavily depends on OS type

• Interactive
• Real-time
• Batch server
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Scheduling in an interactive world

• Most critical property
• Responsiveness of interactive processes is optimal

• Interactive processes
• Processes reacting to I/O events

• Scheduling strategy
• Scheduling algorithm

• Election of next running process among the pool of ready ones
• Places where the scheduling code is executed
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The FIFO Scheduler

• Running process = head of ready 
list
• Removed only when blocking or 

terminating
• No periodic preemption

• Pros
• ?
• ?

• Cons
• ?
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The FIFO Scheduler

• Running process = head of ready 
list
• Removed only when blocking or 

terminating
• No periodic preemption

• Pros
• Very small overhead
• O(1) election algorithm

• Cons
• Starvation
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The Round-Robin Scheduler

• FIFO + preemption
• At each timer interrupt, the 

running process yields CPU to its 
successor

• Pros
• ?
• ?

• Cons
• ?
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The Round-Robin Scheduler

• FIFO + preemption
• At each timer interrupt, the 

running process yields CPU to its 
successor

• Pros
• No starvation
• O(1) scheduler

• Cons
• No priority
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The (strict) Priority Scheduler

• Used in Real-time systems
• One FIFO list per priority level

• Running process = head of 
highest non-empty priority list

• Pros
• O(#priorities) scheduler

• Cons
• ?
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The (strict) Priority Scheduler

• Used in Real-time systems
• One FIFO list per priority level

• Running process = head of highest 
non-empty priority list

• Pros
• O(#priorities) scheduler

• Cons
• How to assign priorities to processes?

67

max prio

emacs

min prio gcc



Assigning dynamic priorities to processes

• We’d like to assign higher priorities 
to ”cool” processes
• Which need to react quickly to 

events?
• Which perform a lot of I/O?
• Which won’t use a full quantum of 

time (10ms) next time?
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Assigning dynamic priorities to processes

• We’d like to assign higher priorities 
to ”cool” processes
• Which need to react quickly to 

events?
• Which perform a lot of I/O?
• Which won’t use a full quantum of 

time (10ms) next time?

• How do we know?
• People can change…

• “If I can change, and you can change, 
everybody can change!”
[Rocky Balboa, 1985]
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Predicting the Future ?
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Predicting the Future

• By looking at the past!
• If a process kept behaving well so far…

…it will probably do so next time we schedule it!
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Predicting the Future

• By looking at the past!
• If a process kept behaving well so 

far…
…it will probably do so next time 
we schedule it!

• P0 looks more friendly than P1
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Predicting the Future

• By looking at the past!
• If a process kept behaving well so 

far…
…it will probably do so next time 
we schedule it!

• P0 looks more friendly than P1
• Really?
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Predicting the Future

• By looking at the past!
• If a process kept behaving well so 

far…
…it will probably do so next time 
we schedule it!

• P0 looks more friendly than P1
• Really?
• Can we forgive P0?
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Estimating duration of the next quantum

• Tn:  CPU utilization observed at step n
• En: estimation of the CPU utilization time at step n

• 𝐸!

• 𝛼 = 0
• Fixed, a priori estimation

• 𝛼 = 1
• We only look at the last period

• 𝛼 = !
"

• 𝐸" = 𝑇#
• 𝐸$ =

"
$
𝑇" +

• 𝐸% =
"
$
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Estimating duration of the next quantum

• Tn:  CPU utilization observed at step n
• En: estimation of the CPU utilization time at step n

• 𝐸! = α 𝑇!&" + 1 − α 𝐸!&"

• 𝛼 = 0
• Fixed, a priori estimation

• 𝛼 = 1
• We only look at the last period

• 𝛼 = !
"

• 𝐸" = 𝑇#
• 𝐸$ =

"
$
𝑇" +

• 𝐸% =
"
$
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Estimating duration of the next quantum

• Tn:  CPU utilization observed at step n
• En: estimation of the CPU utilization time at step n

• 𝐸! = α 𝑇!&" + 1 − α 𝐸!&"

• 𝛼 = 0
• Fixed, a priori estimation

• 𝛼 = 1
• We only look at the last period

• 𝛼 = !
"

• 𝐸" = 𝑇#
• 𝐸$ =

"
$
𝑇" +

"
$
𝑇#

• 𝐸% =
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"
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𝑇" +

"
'
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From Estimation to Priority

• OK, we can predict how long 
each process will run next time it 
is scheduled
• Which process do we choose?

• Try to maximize average 
happiness!
• Think about queues at the 

supermarket!
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From Estimation to Priority

• To maximize average happiness
• We should minimize average 

waiting time
• Schedule shortest jobs first!
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From Estimation to Priority

• To maximize average happiness
• We should minimize average 

waiting time
• Schedule shortest jobs first!

• Priority should be inversely 
proportional to 𝐸!
• Interactive Operating Systems 

schedulers try, more or less, to 
follow this strategy
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Strategy used in Linux 2.4.x kernels

• Credits are assigned to processes, based on their fixed priority
• Sort of “pocket money”

• To run on the CPU, a process must spend money
• No more money = no CPU

• At some point, no more ready processes have money left
• The kernel restarts a new epoch and redistributes credits
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Strategy used in Linux 2.4.x kernels

• Credits are assigned to processes, based on their fixed priority
• Let us take a concrete, simple example with 3 processes
• Initially:

• P0 has 4 credits
• P1 has 3 credits
• P2 has 3 credits
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Strategy used in Linux 2.4.x kernels

• Credits are assigned to processes, based on their fixed priority
• Let us take a concrete, simple example with 3 processes
• Initially:

• P0 has 4 credits
• P1 has 3 credits
• P2 has 3 credits

• Rich people are usually privileged, aren’t they?
• So P0 will be the next running process

84



Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels
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Strategy used in Linux 2.4.x kernels

• When all “ready processes” are short of credits, Linux starts a new 
Epoch
• Money is credited back to all processes
• The same way you give money to your kids every month…

• Duration of an Epoch is unknown, though
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Strategy used in Linux 2.4.x kernels

• When all “ready processes” are short of credits, Linux starts a new 
Epoch
• Money is credited back to all processes
• The same way you give money to your kids every month…

• Duration of an Epoch is unknown, though

• Uh, wait… Really?
• What if a process did not spend all its credits?

• In other words: one of your kids is secretly saving money…
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Strategy used in Linux 2.4.x kernels

• Uh, wait… Really?
• What if a process did not spend all its credits?

• In other words: one of your kids is secretly saving money…
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Strategy used in Linux 2.4.x kernels

• To avoid infinite accumulation of credits
• One solution is to introduce a tax!

• At the beginning of a new Epoch, each process receives
• to_credits(priority) + remaining_credits/2
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Strategy used in Linux 2.4.x kernels

• To avoid infinite accumulation of credits
• One solution is to introduce a tax!

• At the beginning of a new Epoch, each process receives
• to_credits(priority) + remaining_credits/2

• In the worst case, a process can accumulate
• C
• C + C/2
• C + C/2 + C/4
• C + C/2 + C/4 + C/8
• C + C/2 + C/4 + C+8 + …

• Bounded by  2C
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Strategy used in Linux 2.4.x kernels

• We’re now ready to explore how this is implemented!
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Scheduling on multicore machines

• Each core runs the scheduler asynchronously
• Timer interrupts not necessarily synchronized

• The ready list can be
• Shared by all cores

• How to prevent multiple cores from choosing the same process simultaneously?
• Distributed among cores

• How to balance ready threads fairly? How often?

• Local scheduling decisions can require “reschedule” operations on 
other cores
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Processes and Threads

• Threads = Execution context

• Process = Thread + Address 
Space

• Several threads can share the 
same address space

114
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Processes and Threads
int main (int argc, char *argv[])

{
  pthread_t pid;

  pthread_create (&pid, NULL, func, “thread”);

  printf ("Hello from main\n");

  pthread_join (pid, NULL);

  return 0;

}

115

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int NBTHREADS = 1;

void *func (void *arg)

{

  printf ("Hello from %s\n", arg);

  return NULL;

}



Processes and Threads

• Some (daemons) threads only 
run inside the kernel

• Modern kernels manage only 
threads
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Processes and Threads: the Big Picture
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Processes and Threads: the Big Picture
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Race conditions

• Threads can access the same data simultaneously
• May lead to undefined behavior, data corruption, …
• Think about

• Linked lists, graphs, hash tables
• Structures where several fields must be updated consistently
• Or just integers…

• When executing kernel code, processes share data as well
• So the kernel must enforce synchronization
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Race conditions
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volatile int n = 0;

for (int i = 0; i < 100; i++)
n++;

for (int i = 0; i < 100; i++)
n++;

printf ("n = %d\n", n);

𝑛 = 200 ?

pthread_join



Race conditions

121

volatile int n = 0;

for (int i = 0; i < 100; i++)
n++;

for (int i = 0; i < 100; i++)
n++;

printf ("n = %d\n", n);

pthread_join

𝑛 ∈ [100,200] ?



Possible scenario
load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄

122

n : 0



Possible scenario

load @n, r1
inc r1

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄

123

n : 0

context switch



Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

99x

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄
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n : 0 99



Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

99x

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄
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n : 0 99 1



Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

99x

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄
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n : 0 99 1



Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

99x

99x

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄
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n : 0 99 1 100



Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

99x

99x

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄
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n : 0 99 1 100 2



Possible scenario

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

load @n, r1
inc r1

load @n, r1
inc r1
store r1, @n
…

store r1, @n

99x

99x

load @n, r1 ; load from memory
inc r1  ; increment register
store r1, @n ; store in memory

n++ ⬄

129

n : 0 99 1 100 2
𝑛 ∈ [2,200] !



Race conditions

• Even the simple ++ operator is not an atomic operation
• So we must prevent multiple threads to execute this operation concurrently!

• To do so, we need synchronization tools
• This is the topic of the fascinating next chapter! J
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Additional resources
available on

http://gforgeron.gitlab.io/se/
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http://gforgeron.gitlab.io/se/

