Operating Systems:
Memory Management

Raymond Namyst

Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/se/

Back to good old times

* Only one process at a time was loaded in memory
* OS resides in a specific part of RAM
* The other part can host a user process

* No need for any sophisticated memory management on the OS side

* Programs starting address is expected to be known at compile time
* That’s what your Computer Architecture teacher told you, uh? ©

MS-DOS (ex IBM PC DOS)

* Single task OS
* Max 1 MB of RAM

* 16 bits “real” addressing
* No protection

* Even the interrupt Vector Table
can be modified by user programs

* Sounds weird that we can use
more than 64KB... ®

Address

FFFFF
ROM BIOS

Reserved

Video Text & Graphics

Video Graphics

Transient Command Processor

Transient Program Area
(available for application programs)

Resi P
DOS Kernel, Device Drivers
Software BIOS

BIOS & DOS Data

Interrupt Vector Table

MS-DOS (ex IBM PC DOS)

* Funnily enough... e Example: PutChar ('A’)

e ..0S routines were “portably”
reached through interrupt
multiplexers

* int 08h — Timer interrupt

e int 10h — Video services

* Int 16h — Keyboard services
e int 21h — MS-DOS services

MS-DOS (ex IBM PC DOS)

* Funnily enough... e Example: PutChar ('A’)

e ..OS routines were “portably”
reached through interrupt
multiplexers

* int 08h — Timer interrupt

e int 10h — Video services int 21h
* Int 16h — Keyboard services

e int 21h — MS-DOS services

mov ah, 02h
mov dl, ‘A’

MS-DOS (ex IBM PC DOS)

* Funnily enough... e Example: PutChar ('A’)

e ..0S routines were “portably” Exit (0)
reached through interrupt
multiplexers

* int 08h — Timer interrupt
* int 10h — Video services

ah, 02h
dl, ‘A

* Int 16h — Keyboard services
e int 21h — MS-DOS services

Towards Multiprogramming

 What was the reason for introducing
multitasking in Operating Systems?

* i.e. allowing multiple processes to
stay in memory

Towards Multiprogramming

 What was the reason for introducing
multitasking in Operating Systems?

* i.e. allowing multiple processes to
stay in memory

o : ; ‘ﬁ,,,)
[
. | - 72@d | .

Towards Multiprogramming

 What was the reason for introducing
multitasking in Operating Systems?

* i.e. allowing multiple processes to
stay In memory

* Money!
* Processes spend a significant time in I/O
operations
* With tape drives, it took time...
* CPU idleness costs a lot

* Let P be the (average) ratio of I/0O time
* P =probability to be idle

* By using n processes, the probability of
the CPU being idle is 1 —P"

Towards Multiprogramming

* With great power comes
great complications!

 How to compile processes even if
we don’t know at which address
they will be placed?

* How to address memory
fragmentation?

* How to let processes grow?

 How to enforce memory
protection?

Towards Multiprogramming

* With great power comes int
great complications!

 How to compile processes even if
we don’t know at which address
they will be placed?

int

int

Towards Multiprogramming

e With great power comes »0000. e

great complications! 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

* How to Complle processes even |f 0x0006: 30470010000 irmovl Stack, %esp
) , 0x000c: 500864010000 mrmovl a, %eax
we don’t know at which address 0x0012: 501868010000 mrmovl b, %ecx

. 0x0018: 6010 addl %ecx, %eax
they will be placed? 0x001a: 40086010000 rmmovl %eax, c

* I|llustration with y86 code gxggg?i 10 poshgé;
X . .

0x0164: a:

0x0164: 05000000 .long 5
0x0168: b:

0x0168: 1000000 .long 31
0x016¢C: C:

0x016c: 00000000 .long ©
0x0170: Stack:

https://dept-info.labri.fr/ENSEIGNEMENT/archi/js-y86/

Towards Multiprogramming

e With great power comes »0000. e

great complications! 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

* How to Complle processes even |f 0x0006: 30470010000 irmovl Stack, %esp

) , 0x000c: 500864010000
we don’t know at which address 0x0012: 501868010000 ——
0x0018: 6010 load value from memory at

they will be placed? AL LAY address ” and store in
* Illustration with y86 code giggg?; e register ‘eax’
0x0164:
0x0164: 05000000
0x0168:
0x0168: 1000000
0x016¢:
0x016c: 00000000
0x0170:

Towards Multiprogramming

e With great power comes »0000. e

great complications! 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

* How to Complle processes even |f 0x0006: 30470010000 irmovl Stack, %esp
) . 0x000c: 500864010000 mrmovl a, %eax
we don’t know at which address 0x0012: 501868010000 mrmovl b, %ecx

. p) 0x0018: 6010 addl %ecx, %eax
they will be placed: 0x001a: 40086010000 rmmovl %eax, c

* I|llustration with y86 code gxggg?i 10 . hgé;
X s .pos

0x0164: a:

0x0164: 05000000 .long 5
0x0168: b:

0x0168: 1000000 .long 31
0x016¢C: C:

0x016c: 00000000 .long ©
0x0170: Stack:

Towards Multiprogramming

e With great power comes »0000. e

great complications! 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

* How to Complle processes even |f 0x0006: 30470010000 irmovl Stack, %esp
) , 0x000c: 500864010000 mrmovl a, %eax
we don’t know at which address 0x0012: 501868010000 mrmovl b, %ecx

. 0x0018: 6010 addl %ecx, %eax
they will be placed? 0x001a: 40086010000 rmmovl %eax, c

* I|llustration with y86 code gxggg?i 10 poshgé;
X . .

0x0164: a:

0x0164: 05000000 .long 5
0x0168: b:

0x0168: 1f000000 .long 31
0x016¢C: C:

0x016c: 00000000 .long ©
0x0170: Stack:

Towards Multiprogramming

e With great power comes »0000. e

great complications! 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

* How to Complle processes even |f 0x0006: 30470010000 irmovl Stack, %esp
) , 0x000c: 500864010000 mrmovl a, %eax
we don’t know at which address 0x0012: 501868010000 mrmovl b, %ecx

. p) 0x0018: 6010 addl %ecx, %eax
they will be placed: 0x001a: 40086010000 rmmovl %eax, c

* I|llustration with y86 code gxggg?i 10 hgé;
X : .pos

0x0164: a:
: Lo 0x0164: 05000000 .long 5
* This code assumes that it will be 0x0168- b: 8

placed at address O... 0x0168: 1000000 .long 31

. . , 0x016c¢: C:
* Otherwise, it wouldn’t work 0x016c: 00000000 .long @

0x0170: Stack:

Towards Multiprogramming

* So, what shall we do if the oRoenn. pos 0

program is loaded at address 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

Ox100 ? 0x0006: 30f470010000 irmovl Stack, %esp
0x000c: 500864010000 mrmovl a, %eax
° At |Oad t|me we must Change 0x0012: 501868010000 mrmovl b, %ecx
! 0x0018: 6010 addl %ecx, %eax
* 70 01 00 00 -> 70 0z 00 00 0x001a: 40086c010000 rmmovl %eax, c
0x0021: .pos 356
e 64 01 00 00 -=> 64 02 00 0O Ox0164: e

* 68 01 00 00 => 68 02 00 00 0x0164: 05000000 .long 5

. B 0x0168: b:
6c 01 00 00 -> 6c 02 00 00 0x0168: 1f000000 .long 31

0x016¢C: C:
0x016c: 00000000 .long ©
0x0170: Stack:

Towards Multiprogramming

* So, what shall we do if the oRoenn. pos 0

program is loaded at address 0x0000: Init:
0x0000: 30f570010000 irmovl Stack, %ebp

Ox100 ? 0x0006: 30f470010000 irmovl Stack, %esp
0x000c: 500864010000 mrmovl a, %eax
° At |Oad t|me we must Change 0x0012: 501868010000 mrmovl b, %ecx
! 0x0018: 6010 addl %ecx, %eax
* 70 01 00 00 -> 70 0z 00 00 0x001a: 40086c010000 rmmovl %eax, c
0x0021: .pos 356
e 64 01 00 00 -=> 64 02 00 0O Ox0164: e

* 68 01 00 00 => 68 02 00 00 0x0164: 05000000 .long 5

. B 0x0168: b:
6c 01 00 00 -> 6c 02 00 00 0x0168: 1f000000 .long 31

0x016¢C: c:
0x016c: 00000000 .long ©

* So “Find & Replace” and that’s it? 0x0170: Stack:

Towards Multiprogramming

* So, what shall we do if the 0x0000: pos 0

1 0x0000: Init:
program IS Ioaded at address 0?0000: 30f570010000 ' irmovl Stack, %ebp

0Ox100 ? 0x0006: 30f470010000 irmovl Stack, %esp
0x000c: 500864010000 mrmovl a, %eax
e At Ioad t|me’ we must Change 0x0012: 501868010000 mrmovl b, %ecx
0x0018: 6010 addl %ecx, %eax
* 70 01 00 00 -> 70 0z 00 00 0x001a: 40086c010000 rmmovl %eax, c
o 0x0020: 10 halt
At 2 places 0x0021: .pos 356
* 64 01 00 00 => 064 02 00 00 0x0164: a:

* 68 01 00 00 => 68 02 00 00 0x0164: 68010000 .long (360

0x0168: b:
oc 01 00 00 -> 6Cc 02 00 0O 0x0168: 1f000000 .long 31

0x016¢C: C:
0x016c: 00000000 .long ©
0x0170: Stack:

Towards Multiprogramming

* The compiler generates 2x0000- pos ¢

“ ive” i 0x0000: Init:
relat|Ve references In the COde 0?0000: 30570010000 ' irmovl Stack, %ebp

° H 0x0006: 30f470010000 irmovl Stack, %esp
AS If the COde WOUld start at OXO 0x000c: 500864010000 mrmovl a, %eax

° The “St Of these references is 0x0012: 501868010000 mrmovl b, %ecx
. . . 0x0018: 6010 addl %ecx, %eax
included in the binary 0x001a: 40086c010000 rmmovl %eax, c

0x0020: 10 halt
0x0021: .pos 356
0x0164: a:

i 0x0164: 68010000 . 360
* If the program is loaded at 0x0164: , -lone

0x100, the loader must perform e I Long 31
X C: c:

° Val — Val + 0Ox100 0x016c: 00000000 .long ©

0x0170: Stack:
* At 0x0002, 0x0008, 0x000e, 0x0014
and 0x001c

Code relocation

* For different purposes, code
relocation also used by today’s
compilers

* At compile time (# linking), final
address of symbols is unknown

* The compiler builds a list of
relocation entries to be handled by
the linker

0-

int 1 ;
31;

int j =
int f (int x, int vy)
{

return x + vy;

}

int main (int argc, char *argvl([])
{

int a;

if (argc > 1)
i = atoi (argvI[1ll]);

printf ("Result : %d\n", a);

return 0;

Code relocation

* For different purposes, code
relocation also used by today’s
compilers

* At compile time (# linking), final
address of symbols is unknown

* The compiler builds a list of
relocation entries to be handled by
the linker

* Address Space Layout
Randomization (ASLR)

0-

int 1 ;
31;

int j =
int f (int x, int vy)
{

return x + vy;

}

int main (int argc, char *argvl([])
{

int a;

if (argc > 1)
i = atoi (argvI[1ll]);

printf ("Result : %d\n", a);

return 0;

Code relocation (x64

° . °

[mymachine] objdump -d prog.o [mymachine] readelf -r prog.o
0000000000000014 <main>: Section de réadressage '.rela.text' a I'adresse de décalage 0x2f8 contient 7 entrées:

14: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda

15: 4889 €5 mov %rsp,%rbp 000000000038 000e00000004 R_X86_64_PLT32 0000000000000000 atoi - 4

[...] 00000000003e 000900000002 R_X86_64_PC32 0000000000000000 i - 4

34: 4889 c7 mov %rax,%rdi 000000000044 000200000002 R_X86_64_PC32 0000000000000000j - 4

37: €8 00 00 00 00 callg 3c <main+0x28> 00000000004a 000900000002 R_X86_64_PC32 0000000000000000i - 4

3c: 890500000000 mov %eax,0x0(%rip) 000000000053 000b00000004 R_X86_64_PLT32 0000000000000000 f - 4

42: 8b 15 00 00 00 00 0x0(%rip), %edx 000000000062 000500000002 R_X86_64_PC32 0000000000000000 .rodata - 4

48: 8b 05 00 00 00 00 0x0(%rip),%eax 00000000006¢c 000fO0000004 R_X86_64_PLT32 0000000000000000 printf - 4

de: 89d6 mov %edx,%esi

50: 89 c7 mov %eax,%edi

52: €800 00 00 00 callg 57 <main+0x43>
57: 8945 fc mov %eax,-0x4(%rbp)
5a: 8b 45 fc mov -0x4(%rbp),%eax
5d: 89 c6 mov %eax,%esi

5f: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
66: b8 00 00 00 00 mov $S0x0,%eax

6b: €800 00 00 00 callg 70 <main+0x5¢c>
70: b8 00 00 00 00 mov $S0x0,%eax

75: c9 leaveq

76: c3 retq

Code relocation (x64

° . °

[mymachine] objdump -d prog.o [mymachine] readelf -r prog.o
0000000000000014 <main>: Section de réadressage '.rela.text' a I'adresse de décalage 0x2f8 contient 7 entrées:

14: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda

15: 4889 €5 mov %rsp,%rbp 000000000038 000e00000004 R_X86_64_PLT32 0000000000000000 atoi - 4

[...] 00000000003e 000900000002 R_X86_64_PC32 0000000000000000 i - 4

34: 4889 c7 mov %rax,%rdi 000000000044 000200000002 R_X86_64_PC32 0000000000000000j - 4

37: €8 00 00 00 00 callg 3c <main+0x28> 00000000004a 000900000002 R_X86_64_PC32 0000000000000000i - 4

3c: 890500000000)mov %eax,0x0(%rip) 000000000053 000b00000004 R_X86_64_PLT32 0000000000000000 f - 4

42: 8b 1500000000 mov 0x0Q(%rip),%edx 000000000062 000500000002 R_X86_64_PC32 0000000000000000 .rodata - 4

48: 8b 05 00 00 00 00 0x0(%rip];%eax 00000000006¢c 000fO0000004 R_X86_64_PLT32 0000000000000000 printf - 4

de: 89d6 mov—~%edx, %esi

50: 89 c7 mov %eax,%edi

52: €800 00 00 00 callg 57 <main+0x43>
57: 8945 fc mov %eax,-0x4(%rbp)
5a: 8b 45 fc mov -0x4(%rbp),%eax
5d: 89 c6 mov %eax,%esi

5f: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
66: b8 00 00 00 00 mov $S0x0,%eax

6b: €800 00 00 00 callg 70 <main+0x5¢c>
70: b8 00 00 00 00 mov $S0x0,%eax

75: c9 leaveq

76: c3 retq

Code relocation (x64

° . °
[mymachine] objdump -d prog.o [mymachine] readelf -r prog.o
0000000000000014 <main>: Section de réadressage '.rela.text' a I'adresse de décalage 0x2f8 contient 7 entrées:

14: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda

15: 4889 €5 mov %rsp,%rbp 000000000038 000e00000004 R_X86_64_PLT32 0000000000000000 atoi - 4
[...] 00000000003e 000900000002 R_X86_64_PC32 0000000000000000 i - 4
34: 4889 c7 mov %rax,%rdi 000000000044 000200000002 R_X86_64_PC32 0000000000000000j - 4
37: €8 00 00 00 00 callg 3c <main+0x28> 00000000004a 000900000002 R_X86_64_PC32 0000000000000000i - 4

3c: 890500000000 mov %eax,0x0(%rip) 000000000053 000b00000004 R_X86_64_PLT32 0000000000000000 f - 4

42: 8b 15 00 00 00 00 0x0(%rip),%edx 000000000062 000500000002 R_X86_64_PC32 0000000000000000 .rodata - 4

48: 8b 0500000000 muov._O0x0(%rip),%eax 00000000006¢c 000fO0000004 R_X86_64_PLT32 0000000000000000 printf - 4

de: 89d6 mov %edx;%esi

50: 89 c7 mov %eax,%edi

52: €800 00 00 00 callg 57 <main+0x43>
57: 8945 fc mov %eax,-0x4(%rbp)
5a: 8b 45 fc mov -0x4(%rbp),%eax
5d: 89 c6 mov %eax,%esi

5f: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
66: b8 00 00 00 00 mov $S0x0,%eax

6b: €800 00 00 00 callg 70 <main+0x5¢c>
70: b8 00 00 00 00 mov $S0x0,%eax

75: c9 leaveq

76: c3 retq

Code relocation (x64

° . °

[mymachine] objdump -d prog.o [mymachine] readelf -r prog.o
0000000000000014 <main>: Section de réadressage '.rela.text' a I'adresse de décalage 0x2f8 contient 7 entrées:

14: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda

15: 4889 €5 mov %rsp,%rbp 000000000038 000e00000004 R_X86_64_PLT32 0000000000000000 atoi - 4

[...] 00000000003e 000900000002 R_X86_64_PC32 0000000000000000 i - 4

34: 4889 c7 mov %rax,%rdi 000000000044 000200000002 R_X86_64_PC32 0000000000000000j - 4

37: €8 00 00 00 00 callg 3c <main+0x28> 00000000004a 000900000002 R_X86_64_PC32 0000000000000000i - 4

3c: 890500000000 mov %eax,0x0(%rip) 000000000053 000b00000004 R_X86_64_PLT32 0000000000000000 f - 4

42: 8b 15 00 00 00 00 0x0(%rip), %edx 000000000062 000500000002 R_X86_64_PC32 0000000000000000 .rodata - 4

48: 8b 05 00 00 00 00 0x0(%rip),%eax 00000000006¢c 000fO0000004 R_X86_64_PLT32 0000000000000000 printf - 4

de: 89d6 mov %edx,%esi

50: 89 c7 mov %eax,%edi

52: 800 00 00 00 callg 57 <main+0x43>
57: 8945 fc mov Yeax,=0x4(%rbp)
5a: 8b 45 fc mov -0x4(%rbp),%eax
5d: 89 c6 mov %eax,%esi

5f: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
66: b8 00 00 00 00 mov $S0x0,%eax

6b: €800 00 00 00 callg 70 <main+0x5¢c>
70: b8 00 00 00 00 mov $S0x0,%eax

75: c9 leaveq

76: c3 retq

Code relocation (x64

° . °

[mymachine] objdump -d prog.o [mymachine] readelf -r prog.o
0000000000000014 <main>: Section de réadressage '.rela.text' a I'adresse de décalage 0x2f8 contient 7 entrées:

14: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda

15: 4889 €5 mov %rsp,%rbp 000000000038 000e00000004 R_X86_64_PLT32 0000000000000000 atoi - 4

[...] 00000000003e NDO0900000002 R_X86_64_PC32 0000000000000000 i - 4

34: 4889 c7 mov %rax,%rdi 000000000044 000300000002 R_X86_64_PC32 0000000000000000j - 4

37: €8 00 00 00 00 callg 3c <main+0x28> 000000000042 K)009000Q0002 R_X86_64_PC32 0000000000000000 - 4

3c: 890500000000 mov %eax,0x0(%rip) 000000000053 000B@00000B4 R_X86_64_PLT32 0000000000000000 f - 4

42: 8b 15 00 00 00 00 0x0(%rip), %edx 000000000062 000500000002 RX86_64 PC32 0000000000000000 .rodata - 4

48: 8b 05 00 00 00 00 0x0(%rip),%eax 00000000006¢c 000fO0000004 R™X86_&4_PLT32 0000000000000000 printf - 4

de: 89d6 mov %edx,%esi

50: 89 c7 mov %eax,%edi

52: €800 00 00 00 callg 57 <main+0x43>
57: 8945 fc mov %eax,-0x4(%rbp)
5a: 8b 45 fc mov -0x4(%rbp),%eax
5d: 89 c6 mov %eax,%esi

5f: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
66: b8 00 00 00 00 mov $S0x0,%eax

6b: €800 00 00 00 callg 70 <main+0x5¢c>
70: b8 00 00 00 00 mov $S0x0,%eax

75: c9 leaveq

76: c3 retq

Code relocation (x64

[mymachine] objdump -d prog [mymachine] readelf -r prog
0000000000001159 <main>: Section de réadressage ".rela.dyn' a I'adresse de décalage 0x4b0 contient 8 entrées:
1159: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda
115a: 48 89 e5 mov %rsp,%rbp [...]
[...] 000000003fe0 000300000006 R_X86_64_GLOB_DAT 0000000000000000 __libc_start_main@GLIBC_2.2.5+0
48 89 c7 mov %rax,%rdi [...]
e8 bf fe ff ff callg 1040 <atoi@plt>
8905b92e 0000 mov %eax,0x2eb9(%rip) Section de réadressage ".rela.plt' a I'adresse de décalage 0x570 contient 2 entrées:
8b 15 ab 2e 00 00 Ox2eab(%rip),%edx Décalage Info Type Val.-symboles Noms-symb.+ Addenda
8b 05 ad 2e 00 00 Ox2ead(%rip),%eax 000000004018 000200000007 R_X86_64_JUMP_SLO 0000000000000000 printf@GLIBC_2.2.5+0
89 d6 mov %edx,%esi 000000004020 000500000007 R_X86_64_JUMP_SLO 0000000000000000 atoi@GLIBC_2.2.5+0
89 c7 mov %eax,%edi
e8 a9 ff ff ff callg 1145 <f>
8945 fc mov %eax,-0x4(%rbp)
(-]
11ba: c9 leaveq

In the binary (after linking phase)
11bb: 3 retq locations for i, j and f are known...

0000000000004038 <j>:

4038: 1f

[...]
0000000000004040 <i>:

4040:0

Code relocation (x64

[mymachine] objdump -d prog [mymachine] readelf -r prog
0000000000001159 <main>: Section de réadressage ".rela.dyn' a I'adresse de décalage 0x4b0 contient 8 entrées:
1159: 55 push %rbp Décalage Info Type Val.-symboles Noms-symb.+ Addenda
115a: 48 89 e5 mov %rsp,%rbp [...]
[...] 000000003fe0 000300000006 R_X86_64_GLOB_DAT 0000000000000000 __libc_start_main@GLIBC_2.2.5+0
48 89 c7 mov %rax,%rdi [...]
e8 bf fe ff ff callg 1040 <atoi@plt>
8905b92e 0000 mov %eax,0x2eb9(%rip) Section de réadressage ".rela.plt' a I'adresse de décalage 0x570 contient 2 entrées:
8b 15 ab 2e 00 00 Ox2eab(%rip),26edx Décalage Info Type Val.-symboles Noms-symb.+ Addenda
8b 05 ad 2e 00 00 Ox2ead(%rip), %eax 000000004018 000200000007 R_X86_64_JUMP_SLO 0000000000000000 printf@GLIBC_2.2.5+0
89d6 mov %edx,%esi 000000004020 000500000007 R_X86_64_JUMP_SLO 0000000000000000 atoi@GLIBC_2.2.5+0
89 c7 mov %eax,%edi
e8 a9 ff ff ff callg 1145 <f>
8945 fc mov %eax,-0x4(%rbp)
(-]
11ba: c9 leaveq
116b: 3 retq Resulting address: Ox2eab + %rip (0x118d) = 0x4038
0000000000004038 <j>:
4038: 1f

[...]
0000000000004040 <i>:

e-extended |nstruction Pointer

4040:0

Towards Multiprogramming

* Code relocation performed by
compiler + loader

¥ How to compile processes even if
we don’t know at which address
they will be placed?

e Still to be addressed

* How to address memory
fragmentation?

* How to let processes grow?

 How to enforce memory
protection?

Towards Multiprogramming

* Fragmentation and process
expansion raise similar issues

* Memory fragmentation

e At some point, the OS has to
collect and fuse free spaces by
moving processes

* Expensive memcpy + relocate phase
* Relocation data must be kept!

Towards Multiprogramming

* Fragmentation and process
expansion raise similar issues

* Process expansion

* To make room for an unexpectedly
large amount of malloc operations
(for instance), the OS must

e Either move away multiple processes

* Or relocate current process
elsewhere

Towards Multiprogramming

* How to enforce memory
protection?

e Ask the compiler to perform
checks at compile time?

Towards Multiprogramming

* How to enforce memory
protection?

e Ask the compiler to perform
checks at compile time?
* Illusory

* Think about indirect memory
accesses

* Ask the compiler to generate
checks each time an address is
about to be used?

Towards Multiprogramming

* How to enforce memory
protection?

e Ask the compiler to perform
checks at compile time?
* Illusory

* Think about indirect memory
accesses

* Ask the compiler to generate
checks each time an address is
about to be used?

* Expensive...

Towards Multiprogramming

* How to enforce memory
protection?

e Ask Computer Architects to add
new functionalities to processors!
* Memory access control

* Efficient (free?) Relocation

Towards Multiprogramming

* How to enforce memory
protection?

e Ask Computer Architects to add
new functionalities to processors!
* Memory access control

* Efficient (free?) Relocation

 Computer Architects answered:
“Ok ok, we’ll add two registers for you”

Towards Multiprogramming

* Two special registers:
e Limit: size of current process
* Base: starting address

Ordinary
Registers

Towards Multiprogramming

* Two special registers:
e Limit: size of current process
* Base: starting address

* Set by OS at each context switch active

| —
process

Ordinary
Registers

Towards Multiprogramming

* Two special registers:
e Limit: size of current process
* Base: starting address

* Set by OS at each context switch active

| —
process

Ordinary
Registers

Logical address Physical address

Towards Multiprogramming

* Two special registers:
e Limit: size of current process
* Base: starting address

* Set by OS at each context switch active

| —
process

CPU

Ordinary exception
Registers

Logical address —ok

112 — G
f

Towards Multiprogramming

* Two special registers:
e Limit: size of current process
* Base: starting address

* Set by OS at each context switch

Ordinary
Registers

Logical address Physical address

Ly A— ok ,(+ 257 —

f

Base + Limit registers

* Processes are now isolated from each other
* Logical to physical conversion incurs almost no overhead
* Moving a process to a new location = cost of memmove

* Protection is guaranteed by hardware
* No access allowed outside address space

Base + Limit registers

* Processes are now isolated from each other
* Logical to physical conversion incurs almost no overhead
* Moving a process to a new location = cost of memmove

* Protection is guaranteed by hardware
* No access allowed outside address space

* Well, maybe they’re too isolated
* No direct data sharing between processes is possible

* Memory fragmentation is still pain in the a*H"H"H very annoying

Splitting address spaces

* Address spaces are composed of
different regions
* code, data, heap, stack

Splitting address spaces

* Address spaces are composed of
different regions
* code, data, heap, stack

* There’s no reason why they
should stick together

* Having one separate (base,limit)
per region would allow
independent allocations

Segmentation

e Having one separate (base, limit)
per memory segment
e Array of (limit,base)

Logical address Phy5|cal address

? — —

i

cs 100
ds 150
es 100
SsS 100

Segmentation

* How to determine which
segment to use?
* code, data, extra or stack?

Logical address Phy5|cal address

57 —> —>

i

cs 100
ds 150
es 100
SS 100

Segmentation

e Addresses = segment:offset
* mov ds:[ax], bx
* jmp cs:57

* Default segment is instruction-specific

CPU

Logical address Physical address

!
cs 100 200

ds 150 350
S 100 500
SS 100 50

base

Segmentation

* Splitting address spaces in smaller chunks provides more allocation
flexibility

* Shared memory between processes is possible
* Use the same (base, limit) for multiple processes

e Sharing the code segments could save memory, for instance!
* How about security?

Segmentation

* Access rights can be specified in
segment descriptors
* Read, Write, Execute

CPU

Logical address Physical address

ok 9757 —»

cs:57 —» —

i

100 200
150 350 rw—
100 500 rw—
100 50 rwx

base mode

Segmentation

Heap of P,

* Access rights can be specified in
segment descriptors
* Read, Write, Execute

Data of P,

* Access mode is provided by CPU

p
CPU

Logical address Physical address

ok 9757 —»

cs:57,RX ——» —>

i

s | 100 200
ds 150 350 rw—
hs | 100 500 | rw- Stack of P,

SS 100 50 rwx

base mode

Quiz time

Segmentation

* Splitting address spaces in smaller chunks provides more allocation
flexibility

* Shared memory between processes is possible
* Use the same (base, limit) for multiple processes

* Memory accesses are controlled on a per-segment basis

Segmentation

* Splitting address spaces in smaller chunks provides more allocation
flexibility

* Shared memory between processes is possible
* Use the same (base, limit) for multiple processes

* Memory accesses are controlled on a per-segment basis

Towards no fragmentation on the OS side

* To get rid of small chunks of free
memory...
...let’s enforce a single chunk size!

 Called Page (aka Frame)

Towards no fragmentation on the OS side

* To get rid of small chunks of free
memory...
...let’s enforce a single chunk size!

 Called Page (aka Frame)

* Physical memory is virtually divided
in pages of the same size

* Typically 4KB on x86 architectures

* A page is either
* Allocated (e.g. to a process)
* Free

Memory Paging

* Processes’ address spaces are
also (virtually) divided in pages

Memory Paging

* Processes’ address spaces are
also (virtually) divided in pages
* Page is the unique allocation unit

Memory Paging

* Processes’ address spaces are
also (virtually) divided in pages
e Space reclaimed by processes

must be rounded to a multiple of
Page Size

* And aligned on a multiple of Page
Size as well

Memory Paging

* Processes’ address spaces are
also (virtually) divided in pages
* Not all pages are allocated

Memory Paging

* Processes’ address spaces are
also (virtually) divided in pages
* Pages are dynamically allocated
on-the-fly

* No guarantee that contiguous virtual

pages are allocated contiguously in
physical memory

Memory Paging

* Processes’ address spaces are
also (virtually) divided in pages

* Pages are dynamically allocated
on-the-fly
* No guarantee that contiguous virtual
pages are allocated contiguously in
physical memory
* Very efficient allocator on the OS
side!

* get free_page() could be
implemented using O(1) algorithms

Memory Paging

* Virtual to Physical address
translation

e When the CPU executes user-level
code, it sees

* Asin Segmented Systems, we
must translate such addresses into
physical addresses in RAM

* Problem: the mapping is irregular!

14
13
12
11

=
o

O R, N W & U1 O N 0O O

Py

Physical
addresses

Virtual
addresses

bl

.

SEV

O R, N W & U1 OO N 00 O

Memory Paging

* Virtual to Physical address
translation
* Assuming page size is 4KB (21?)
e Say a variable ‘i’ in the data

segment has the following virtual
address:

e &i=12436
e Whereis ‘i’ located?

14
13
12
11

=
o

O R, N W & U1 O N 0O O

P

Physical
addresses

Virtual
addresses

bl

.

SEV

O R, N W & U1 OO N 00 O

Memory Paging

* Virtual to Physical address
translation
* Assuming page size is 4KB (21?)
e Say a variable ‘i’ in the data

segment has the following virtual
address:

* &i=12436
e 12436 =3 * 4096 + 148

14
13
12
11

=
o

O R, N W & U1 O N 0O O

P

Physical
addresses

Virtual
addresses

bl

.

SEV

O R, N W & U1 OO N 00 O

Memory Paging

* Virtual to Physical address
translation

* Assuming page size is 4KB (21?)

e Say a variable ‘i’ in the data
segment has the following virtual
address:

e &i=12436
* 12436 =3 * 4096 + 148

* ‘i’ is located inside virtual page 3, at
offset 148

14
13
12
11

=
o

OI—‘I\XUJAU‘IO\\IOOKO

P

Physical
addresses

Virtual
addresses

bl

.

SEV

O R, N W & U1 OO N 00 O

Memory Paging

* Virtual to Physical address
translation

* Assuming page size is 4KB (21?)

e Say a variable ‘i’ in the data
segment has the following virtual
address:

e &i=12436
* 12436 =3 * 4096 + 148

* ‘i’ is located inside virtual page 3, at
offset 148

Its physical address is 8 * 4096 + 148

14
13
12
11

=
o

O R, N W & U1 O N 0O O

Py

Virtual
addresses

SEV

Physical
addresses

bl

.

OI—\NwhmO\\l/‘OOLD

[e)]
(o]

Memory Paging

* Virtual to Physical address
translation

* Binary representations of 32-bit
addresses
e vV@i=3*4096 + 148

20 bits 12 bits
A A

* V@i= 000010010100

° p@|=

14
13
12
11

=
o

O R, N W & U1 O N 0O O

Py

Physical
addresses

Virtual
addresses

bl

.

SEV

OI—\NUU-bU'IO\\I/‘OOLD

[e)}
(e}

Memory Paging

* Virtual to Physical address
translation

* Binary representations of 32-bit
addresses
e vV@i=3*4096 + 148

20 bits 12 bits
A A

* V@i= 000010010100

* p@i=000000...01000 000010010100

14
13
12
11

=
o

O R, N W & U1 O N 0O O

Py

Physical
addresses

Virtual
addresses

bl

.

SEV

OI—\NUU-bU'IO\\I/‘OOLD

~
o

Memory Paging

* Virtual to Physical address
translation

* We “just” need to convert virtual
pages (VP) to physical pages (PP)
* For each process
e Use a table?

14
13
12
11

=
o

O R, N W & U1 O N 0O O

Py

Physical
addresses

Virtual
addresses

bl

.

SEV

O R, N W & U1 OO N 00 O

Memory Paging 3

Physical
addresses

o Virtual
phys_ Page f>° addresses A

M
/

12
11

=
o

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

=
w

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
H

Memory Paging 3

Physical
addresses

Virtual
addresses A

.

Phys. Page

14

2 =
: a

~ | Valid

12
11

=
o

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
w

=
H

Memory Paging 3

Physical
addresses

Virtual
addresses A

.

Phys. Page

p
4

14

N
/

= |~ | Valid

12
11

=
o

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
w

=
H

Memory Paging 3

Physical
addresses

Virtual
addresses A

.

Phys. Page

p
4
5

14

N
/

12
11

|~ |~ Valid

=
o

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
w

=
H

Memory Paging 3

Virtual
addresses A

.

Physical
addresses

14

N
/

12
11

=
o

R|lRr[Rr|[R|[~]~] Valid

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

=
w

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
H

Memory Paging 3

Virtual
addresses A

.

Physical
addresses

14

N
/

12
11

=
o

R|lRr[Rr|[R|[~]~] Valid

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

=
w

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
H

Memory Paging 3

Virtual
addresses A

.

Physical
addresses

14

N
/

12
11

=
o

R|lRr[Rr|[R|[~]~] Valid

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[

=
N

=
w

O R, N W & U1 O N 0O O
O R, N W & U1 OO N 00 O

=
H

Memory Paging

Phys. Page

* Virtual to Physical address
translation
* We “just” need to convert virtual
pages (VP) to physical pages (PP)
* For each process
e Use a table?

R|Rr[Rr[~|[~]~] Valid

O 00 NO Ul b WN = O

* How many virtual pages per
process?

[y
o

[EEY
[EEY

[y
N

[y
w

[y
s

Memory Paging

Phys. Page

* Virtual to Physical address
translation
* We “just” need to convert virtual
pages (VP) to physical pages (PP)
* For each process
e Use a table?

R|Rr[Rr[~|[~]~] Valid

O 00 NO Ul b WN = O

* How many virtual pages per
process?

» 220 entries in the table (~ 1 million)

[y
o

[EEY
[EEY

[y
N

[y
w

[y
s

Memory Paging

Phys. Page

* Virtual to Physical address
translation
* We “just” need to convert virtual
pages (VP) to physical pages (PP)
* For each process
e Use a table?

R|Rr[Rr[~|[~]~] Valid

O 00 NO Ul b WN = O

* How many virtual pages per
process?
» 220 entries in the table (~ 1 million)
e Each entry occupies 20 bits
* Rounded to 32 bits = 4 bytes

[y
o

[EEY
[EEY

[y
N

[y
w

[y
s

Memory Paging

Phys. Page

* Virtual to Physical address
translation
* We “just” need to convert virtual
pages (VP) to physical pages (PP)
* For each process
e Use a table?

R|Rr[Rr[~|[~]~] Valid

O 00 NO Ul b WN = O

* How many virtual pages per
process?
» 220 entries in the table (~ 1 million)
e Each entry occupies 20 bits
* Rounded to 32 bits = 4 bytes
e 4 MB per process! Ouch!

[y
o

[EEY
[EEY

[y
N

[y
w

[y
s

Memory Paging

e Ok, now we have one 4MB-table
per process

 We’ll see if we can reduce our
memory footprint later

e Where are the tables stored?

Page table
of P4

Page table
of P,

Page table
of P;

Page table
of P,

Memory Paging

e Ok, now we have one 4MB-table
per process

 We’ll see if we can reduce our
memory footprint later

e Where are the tables stored?
* In RAM

e Where else??

Page table
of P4

Page table
of P,

Page table
of P;

Page table
of P,

Address translation

* As usual, virtual to physical
address translation must happen
inside the CPU

e The CPU thus needs to know
should be used

Page table
of P4

Page table
of P,

Page table
of P;

Page table
of P,

Address translation

* As usual, virtual to physical
address translation must happen
inside the CPU

e The CPU thus needs to know
should be used

* The address of the “current” page
table must be stored in a special
register

Page table
of P4

Page table
of P,

Page table
of P;

Page table
of P,

Address translation

* As usual, virtual to physical
address translation must happen
inside the CPU

e The CPU thus needs to know
should be used

* The address of the “current” page
table must be stored in a special
register

* Updated at each context switch...
...that changes current address space

Page table
of P4

Page table
of P,

Page table
of P;

Page table
of P,

The Memory Management Unit (MMU)

~

CPU

Virtual address +——~«—» » Physical address

pageTable

—

J

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~
CPU

Virtual address

Virt Page (20 bits) Offset (12 bits)
A A
N N\

000010010100

pageTable

—

J

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~
CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) Offset (12 bits)
A A

A A
2\ V4 N\ r 2\ V4 N\

000010010100

pageTable

—

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~

CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 A 2\ V4 N\

000010010100 000010010100

pageTable

—

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~

CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 A 2\ V4 N\

000010010100 000010010100

pageTable

—

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~

CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 A 2\ V4 N\

000010010100 000010010100

pageTable

—

Is the page valid?

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~

CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 A 2\ V4 N\

000010010100 000010010100

pageTable

—

J

Is the page valid? No -> exception

||| ||+~]| Valid

0O N O U A WN - O

The Memory Management Unit (MMU)

~

CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 N\ r 2\ V4 N\

000010010100 000000000000000...01000 (000010010100

A

pageTable
8 —1]

J

Is the page valid? Yes -> Read the Phys. Page field

Rl]|+ Valid

0O N O LU A NN L O

The Memory Management Unit (MMU)

=
=
>

Phys. Page

* Actually, page table entries

feature additional access mode

bits

R|lRr|R|[R|~]|~| Valid

*° R, W, X

0
1
2
3
4
5
6
7
8
9

[EY
(@)

[
=

=
N

=
(O8]

H
S

The Memory Management Unit (MMU)

~

CPU

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 \ 2\ V4 N\

000010010100 000010010100

pageTable

—

R |~=]|~=]| Valid

o

[EEN

|

v b W N R O
=
VN

? e

0o

Is the access mode valid? No -> exception

The Memory Management Unit (MMU)

* Address translation is costly

* MMU is a hardware circuit but...

The Memory Management Unit (MMU)

* Address translation is costly

* MMU is a hardware circuit but...

* Each memory access involves an
implicit extra memory access!

The Memory Management Unit (MMU)

* Address translation is costly

* MMU is a hardware circuit but...

* Each memory access involves an
implicit extra memory access!

e DDR RAM at 48 GB/s seems to run at
24 GB/s!

The Memory Management Unit (MMU)

* Address translation is costly

* MMU is a hardware circuit but...

* Each memory access involves an
implicit extra memory access!

e DDR RAM at 48 GB/s seems to run at
24 GB/s!

e Under MS-DOS, we would get the
raw performance ©

Memory Paging

* So we have two serious problems
* Memory footprint of page tables

* Overhead of page table accesses

Reducing Memory Footprint

* Fact

* Page tables contain plenty of invalid pages
* Large contiguous series of invalid pages

Reducing Memory Footprint

* Fact

* Page tables contain plenty of invalid pages
* Large contiguous series of invalid pages

* |dea

e Compress invalid chunks?
* How to do that without loosing the “array indexing” property?

Reducing Memory Footprint

Virtual Page Number (20 bits)

PP 227277

220 entries

Reducing Memory Footprint

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

20 bits

00 000...000

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

20 bits

00 000...000

00 000...001
00 000...010

00 000...011
00 000...100

!

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

20 bits

00 000...000

|

00111..111

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

20 bits

00 000...000

|

00111..111

01 000...000

|

01111..111,

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

20 bits

00 000...000

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

20 bits

00 000...000

|

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

111..111

— .

000...000

111..111,

000...000'

111..111

000...000

111..111

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

Virtual Page Number (20 bits)

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

Virtual Page Number (20 bits)

Block (2 bits) Offset (18 bits)
v A

10 [22227 e 227977

218 entries

218 entries

000...000'

218 entries

111..111

|

218 entries

Reducing Memory Footprint

Virtual Page Number (20 bits)

Block (2 bits) Offset (18 bits)
v A

10 | 2727277 20007

218 entries

218 entries

218 entries

218 entries

Reducing Memory Footprint

Virtual Page Number (20 bits)

Block (2 bits) Offset (18 bits)
v A

10 | 2727277 20007

Reducing Memory Footprint

Virtual Page Number (20 bits)

Block (2 bits) offset (18 bits)
v A

10 | 2727277 20007

Reducing Memory Footprint

vel page table.

218 entries

18 bits

offset

15t level
page table

|

A

—_1

4 entries

2" |evel
page tables

Reducing Memory Footprint

20 - n bits

offset

15t level
page table

A

2" entries | ! : 2" |evel
page tables

MMU and 2-level tables

Virtual address Physical address

Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A A A
N \ N N\

000010010100 —* 000010010100

pageTable

/E

MMU and 2-level tables

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 \ 2\ V4 N\

000010010100 —* 000010010100

pageTable

Phys. Page

R|lR|R|R|FR]~]| Valid

-

OO\IO\U'I-PUJNI—\O\

MMU and 2-level tables

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 \ 2\ V4 N\

000010010100 —* 000010010100

pageTable

Phys. Page

R|lR|R|R|FR]~]| Valid

-

OO\IO\U'I-PUJNI—\O\

MMU and 2-level tables

Virtual address Physical address
Virt Page (20 bits) Offset (12 bits) Phys Page (20 bits) unmodified
A A

A A
2\ V4 h) r 2\ V4 N\

000010010100f —> |000000000000000...01000{000010010100

A

pageTable
8

Phys. Page

Rl]|+] Valid

-

OO\IO\U'I-PLUNI—\O\

What's the point of doing that?

The memory footprint is even worse!

Reducing Memory Footprint

vel page table.

15t level
page table

Reducing Memory Footprint

vel page table.

15t level
page table

Reducing Memory Footprint

vel page table.

15t level
page table

Reducing Memory Footprint

 2-level page tables can save space!

* They add a 1%t level table...
..but the gain comes from the non-allocation some 2" |evel tables

* Page tables are built incrementally
e So unnecessary tables are never allocated

* It works if invalid memory regions are sufficiently
* Big
e Well aligned

Reducing Memory Footprint

 2-level page tables can save space!

* They add a 1%t level table...
..but the gain comes from the non-allocation some 2" |evel tables

* It works if invalid memory regions are sufficiently
* Big
e Well aligned

* For more flexibility, we can increase the # of levels
e Current CPUs support 3, 4 or 5 levels

Reducing Memory Footprint
“3level page table

nl bits n2 bits 20—nl1-n2 bits
A A A

Y

id; id, offset

Wl \\ i

15t level

page table

3" level
page tables

2"! entries

AR pRARAN

2"2 entries

2" [evel
page tables

b LR

Reducing Memory Footprin

»

20—nl1-n2 bits

offset

IARN RRRAA

T L

Reducing Memory Footprint: example

vel page table.

8 bits 4 bits

8 bits

LS

id,

id,

offset

15t [evel
page table

256 entries

16 entries

INAREANAAN

2 [evel
page tables

 Overhead compared to monolithic
table

o]1st|evel:

256 entries

3" |evel
page tables

Reducing Memory Footprint: example

vel page table.

8 bits 4 bits

8 bits

LS

id,

id,

offset

15t [evel
page table

256 entries

16 entries

INAREANAAN

2 [evel
page tables

 Overhead compared to monolithic
table

e 1st|evel: 256 x 4 = 1KB
o 2nd |evel:

256 entries

3" |evel
page tables

Reducing Memory Footprint: example

vel page table.

8 bits 4 bits

8 bits

LS

id,

id,

offset

15t [evel
page table

256 entries

16 entries

INAREANAAN

2 [evel
page tables

 Overhead compared to monolithic
table

e 1st|evel: 256 x 4 = 1KB
o 2nd|evel: 256 x 16 x4 = 16 KB

256 entries

3" |evel
page tables

Reducing Memory Footprint: example

“ievel page table

8 bits 4 bits

8 bits

LS

id,

id,

offset

15t [evel
page table

256 entries

16 entries

INAREANAAN

2 [evel
page tables

 Overhead compared to monolithic
table

e 1st|evel: 256 x 4 = 1KB
o 2nd|evel: 256 x 16 x4 = 16 KB

* To save a 3" |evel table, we need a
well-aligned hole of

256 entries

3" |evel
page tables

Reducing Memory Footprint: example

“ievel page table

8 bits 4 bits

8 bits

LS

id,

id,

offset

15t [evel
page table

256 entries

16 entries

INAREANAAN

2 [evel
page tables

 Overhead compared to monolithic
table

e 1st|evel: 256 x 4 = 1KB
o 2nd|evel: 256 x 16 x4 = 16 KB

* To save a 3" |evel table, we need a
well-aligned hole of

e 256 x4KB=1MB
* The gain is:

256 entries

3" |evel
page tables

Reducing Memory Footprint: example

“ievel page table

8 bits 4 bits

8 bits

LS

id,

id,

offset

15t [evel
page table

256 entries

16 entries

INAREANAAN

2 [evel
page tables

 Overhead compared to monolithic
table

e 1st|evel: 256 x 4 = 1KB
o 2nd|evel: 256 x 16 x4 = 16 KB

* To save a 3" |evel table, we need a
well-aligned hole of

. e 256 x4 KB=1MB
256 entries e The gain is: 256 x 4 = 1KB

* To save a 2" level table, we need a
well-aligned hole of

3" |evel
page tables

Reducing Memory Footprint: example

!'l!!!l !!!! !!l!l! Overhead compared to monolithic

8 bits 4 bits 8 bits table
B ———— e 15t level: 256 x 4 = 1KB
< dy | offset e 2nd |evel: 256 x 16 x 4 = 16 KB

15t [evel
page table

* To save a 3" |evel table, we need a
well-aligned hole of

. e 256 x4 KB=1MB
256 entries e The gain is: 256 x 4 = 1KB

16 entries

INAREANAAN

* To save a 2" level table, we need a
well-aligned hole of

e 16 x1MB =16 MB
2" [evel 3" |evel + The gain is:
page tables page tables

256 entries

Reducing Memory Footprint: example

!'l!!!l !!!! !!l!l! Overhead compared to monolithic

8 bits 4 bits 8 bits table
B ———— e 15t level: 256 x 4 = 1KB
< dy | offset e 2nd |evel: 256 x 16 x 4 = 16 KB

15t [evel
page table

* To save a 3" |evel table, we need a
well-aligned hole of

. e 256 x4 KB=1MB
256 entries e The gain is: 256 x 4 = 1KB

16 entries

INAREANAAN

* To save a 2" level table, we need a
well-aligned hole of

e 16 x1MB =16 MB
2" [evel 3" |evel + The gain is: 16 KB + 64 B
page tables page tables

256 entries

Reducing Memory Footprint

* 3-level page tables can really save a lot of space
e But it adds 3 extra memory accesses on the path to RAM

* The memory appears 4 times slower than expected!

* Improving memory footprint made things go worse

Improving translation performance

* As usual, each time we complain about memory

Improving translation performance

* As usual, each time we complain about memory
 We introduce a cache...

* |[dea: use a cache inside MMU to speed up "most useful translations”

Improving translation performance

* As usual, each time we complain about memory
 We introduce a cache...

* |[dea: use a cache inside MMU to speed up "most useful translations”
* Keep tuples <virtual page #, phys page #, access modes>

 This cache is called Translation Lookaside Buffer (TLB)

The Translation Lookaside Buffer (TLB)

~

CPU

Virtual address

Virt Page (20 bits) Offset (12 bits)
A A
N N\

PP P?

pageTable

—3 ||

J

TLB Hit! No page table access is performed.

||| ||+~]| Valid

0O N O U A WN - O

The Translation Lookaside Buffer (TLB)

~

CPU

Virtual address

Virt Page (20 bits) Offset (12 bits)
A A
N N\

PP P?

pageTable

—3 ||

J

TLB Miss! Page table is accessed.

||| ||+~]| Valid

0O N O U A WN - O

The Translation Lookaside Buffer (TLB)

~

CPU

Virtual address

Virt Page (20 bits) Offset (12 bits)
A A
N N\

PP P?

pageTable

—3 ||

J

TLB Miss! Page table is accessed.
<2,5> is eventually added to TLB

||| ||+~]| Valid

0O N O U A WN - O

The Translation Lookaside Buffer (TLB)

* When TLB is full, which entry
gets evicted?

The Translation Lookaside Buffer (TLB)

* When TLB is full, which entry
gets evicted?
e Last Recently Used (LRU) policy

The Translation Lookaside Buffer (TLB)

* When TLB is full, which entry
gets evicted?
e Last Recently Used (LRU) policy

* TLB is a fully-associative cache
* Fast

The Translation Lookaside Buffer (TLB)

* When TLB is full, which entry
gets evicted?
e Last Recently Used (LRU) policy

* TLB is a fully-associative cache

* Fast
* Expensive

e Typically 32 or 64 entries
* Is that effective?

PV access
20 bits

The Translation Lookaside Buffer (TLB)

e When the OS scheduler switches
from P, to P,

* The TLB contains entries from the
page table of P;

* We must make sure P, won’t use
these values

* TLB flush

* Should we backup its content to
RAM?

The Translation Lookaside Buffer (TLB)

* Using TAGS to avoid flushes

PP mode

0

rw—

8

rw—

r=x

pA

The Translation Lookaside Buffer (TLB)

* Using TAGS to avoid flushes

e The MMU needs to know who is

the current process PP mode

0] rw—
8 rw—
21 r—x

The Translation Lookaside Buffer (TLB)

* Using TAGS to avoid flushes

e The MMU needs to know who is
the current process
pgtable;

* @pageTable is usually used ogtable.
instead of PID petable;

The Translation Lookaside Buffer (TLB)

 Modern CPU generally have two separate TLBs
* Instruction TLB: iTLB
e Data TLB: dTLB
e dTLB misses >> iTLB misses

* They also feature several levels
e L1 private TLB, L2 shared TLB

* Not all TLB are fully associative
* Cache associativity will be further explored in other Master Courses

Memory Paging

* The big picture

 Virtual address spaces and RAM are divided into pages
* Memory allocation is made on a page basis

* Page tables, allocated for each process, allow VP to PP conversions
* To save space, systems use multi-level page tables
* To speed up conversions, the TLB cache keeps the more recent conversions

Quizz time

https://www.wooclap.com/SEFOREVER

Memory Paging

 So far, we’ve mostly talked about (user-space) processes

* How is memory accessed on the Kernel side ?

* |In particular, what happens during a system call?

* Recall that the kernel needs to access user-space memory
e E.g.read (fd, buffer, size)

* In other words, kernel must access both kernel- and user-space...

User/kernel Paging

Phys. Page

* Page Table Entries feature a “user”
bit

= page only accessible in kernel
mode

= page accessible in both modes

* The upper part of the table is
dedicated to kernel pages

0
1
2
3
4
5
6
7
8
9

=
o

* [n some sense, current process’
page table grows when entering
the kernel

[EEY
[EEY

=
N

> Kernel

=
w

O|lRr|kRr|[Rr|[Rr|[~r|o|lOo|O|R|R|[R|[R|[~|[~] Valid

[EEY
'

User/kernel Paging

)

* Page Table Entries feature a “user’ 15 level
bit page table

= page only accessible in kernel
mode

= page accessible in both modes

* The upper part of the table is
dedicated to kernel pages

* [n some sense, current process’
page table grows when entering
the kernel

User/kernel Paging

1 level
page table

All these tables are
shared by all address spaces

User/kernel Paging

* So every process "sees” the same set of kernel pages
(when in kernel mode)

* In Linux 32bits
e 3 GB virtual memory for user-space
* 1 GB for kernel usage

* In Linux 64bits
* The whole physical memory is mapped in kernel virtual space

 Syscalls can directly access virtual addresses passed as parameters
* E.g.write (1, “Hello”, 5);

The Meltdown hardware vulnerability (2017)

* Lipp, Moritz & Schwarz, Michael & Gruss,
Daniel & Prescher, Thomas & Haas,
Werner & Mangard, Stefan & Kocher, Paul
& Genkin, Daniel & Yarom, Yuval &
Hamburg, Mike. (2018). Meltdown.

* The Meltdown vulnerability can be
exploited to gain access to physical
memory

MELTDOWN

The Meltdown hardware vulnerability (2017)

Lipp, Moritz & Schwarz, Michael & Gruss,
Daniel & Prescher, Thomas & Haas,
Werner & Mangard, Stefan & Kocher, Paul
& Genkin, Daniel & Yarom, Yuval &
Hamburg, Mike. (2018). Meltdown.

The Meltdown vulnerability can be
exploited to gain access to physical
memory

* |dea:

 Exploit (unfortunate) race condition in modern
CPU pipelines

* Use a cache side-channel attack to deduce
contents of kernel memory

MELTDOWN

The Meltdown hardware vulnerability (2017)

Lipp, Moritz & Schwarz, Michael & Gruss,
Daniel & Prescher, Thomas & Haas,
Werner & Mangard, Stefan & Kocher, Paul
& Genkin, Daniel & Yarom, Yuval &
Hamburg, Mike. (2018). Meltdown.

The Meltdown vulnerability can be
exploited to gain access to physical
memory

* |dea:

 Exploit (unfortunate) race condition in modern
CPU pipelines

* Use a cache side-channel attack to deduce
contents of kernel memory

0
Affected hardware

* Intel x86, IBM POWER, some ARMs MEI_TDOWN

The Meltdown hardware vulnerability (2017)

L1 Instruction Cache In

* Modern CPU pipelines
Predictor -
e Qut-of-order and speculative execution

. T 4’WZ D .(xj
* To avoid pipeline stalls, instructions can be
* Reordered — "

* False dependencies removal Allocation Queue
* E.g. register renaming
movg _var a, %srax
addg %rax, %rbx
movg _var b, %Srax
mulg %rax, %rcx

Load data
Load data
Store data

ALU, Branch

Load Buffer| |Store Buffer;
b
DTLB STLB
L1 Data Cache -J I

.

Memory
Subsystem

The Meltdown hardware vulnerability (2017)

L1 Instruction Cache In

* Modern CPU pipelines
Predictor -
e Qut-of-order and speculative execution

. T 4’WZ D .(xj
* To avoid pipeline stalls, instructions can be
* Reordered — "

* False dependencies removal Allocation Queue
* E.g. register renaming
movg _var a, %srax
addg %rax, %rbx
movg _var b,
mulg ;, BSrCX

Load data
Load data
Store data

ALU, Branch

Load Buffer| |Store Buffer;
b
DTLB STLB
L1 Data Cache -J I

.

Memory
Subsystem

The Meltdown hardware vulnerability (2017)

e

+ Modern CPU pipelines
Predictor -

e Qut-of-order and speculative execution

 To avoid pipeline stalls, instructions can be

* Executed although we’re not 100% certain
they ShOU|d be Allocation Queue

* Speculative execution
* E.g. Branch prediction
if (x > 0)
y =
else
g();

ALU, Branch =

}
L1 Data Cache -

Memory
Subsystem

The Meltdown hardware vulnerability (2017)

e

* Modern CPU pipelines
Predictor -
Out-of-order and speculative execution
 To avoid pipeline stalls, instructions can be
* Executed although we’re not 100% certain — "
they ShOU|d be Allocation Queue
* Speculative execution
* E.g. Branch prediction -
\ Reorder buffer
if (x > 0)
R TR TR TRTE
Y = f () ’ . L Scheduler
else : : = |
y =907

* Instructions should be NOT BE
COMMITTED in case of misprediction

* No side effect should be
observed outside CPU

ALU, Branch =
ad data [«

}
L1 Data Cache -

Memory
Subsystem

The Meltdown hardware vulnerability (2017)

e

* Modern CPU pipelines
Predictor -
Out-of-order and speculative execution
 To avoid pipeline stalls, instructions can be
* Executed although we’re not 100% certain — "
they ShOU|d be Allocation Queue
* Speculative execution
* E.g. Branch prediction -
\ Reorder buffer
if (x > 0)
R TR TR TRTE
Y = f () ’ . L Scheduler
else : : = |
y =907

* Instructions should be NOT BE
COMMITTED in case of misprediction

* No side effect should be
observed outside CPU

ALU, Branch =
ad data [«

}
L1 Data Cache -

Memory
Subsystem

The Meltdown hardware vulnerability (2017)

 Exceptions and speculative char array [N x 4096];
execution int data = ..;

* The first instructions raises an char c;
exception

* Trap into the kernel *x((1int *)NULL) = 12;
c = array [data * 4096];

The Meltdown hardware vulnerability (2017)

 Exceptions and speculative char array [N x 4096];
execution int data = ..;

* The first instructions raises an char c;
exception

* Trap into the kernel x((int %x)NULL) = 12;
* However, the second instruction ¢ = array [data % 4096];
gets executed before the
exception actually traps...

* The reorder buffer is cleared to
cancel the instruction

e cis not modified
e But there is a side-effect...

The Meltdown hardware vulnerability (2017)

e Side effect char array [N *x 4096];

* Memory content at int data = ..;
* array [data * 4096] char c;

has been accessed and kept into

cache(s) *((int *)NULL) = 12;

c = array [data * 4096];
e Cache timing attack

The Meltdown hardware vulnerability (2017)

e Side effect

* Memory content at
* array [data * 4096]
has been accessed and kept into
cache(s)

B W
S O
o O

Q
E =
g
Q
o >
&3
<

e Cache timing attack

* |f we now measure the access time to
every [i * 4096] element
* We guess the value of data!
* 84 in this example

* So what? Big deal?

The Meltdown hardware vulnerability (2017)

* Our goal is to read a normally ; rcx = kernel address
inaccessible byte from kernel ; rbx = array base address
memory retry:

* Byte address is in rcx mov al, byte [rcx]
* mov al, byte [rcx] will raise an shl rax, 0xc
exception iz retry

mov rbx, qword [rbx + rax]

The Meltdown hardware vulnerability (2017)

* Our goal is to read a normally ; rcx = kernel address
inaccessible byte from kernel ; rbx = array base address
memory retry:

e Byte address is in rcx mov al, byte [rcx]
* mov al, byte [rcx] will raise an shl rax, @xc
exception

jz retr
* HOWEVER, the exception will be] y
scheduled in parallel with the mov rbx, qword [rbx + rax]
transient instructions

* Race condition
* Yeah, that’s incredible...

The Meltdown hardware vulnerability (2017)

* Our goal is to read a normally ; rcx = kernel address
inaccessible byte from kernel ; rbx = array base address
memory retry:

e Byte address is in rcx mov al, byte [rcx]
* mov al, byte [rcx] will raise an shl rax, Oxc
exception iz retry
« HOWEVER, the exception will be

scheduled in parallel with the mov rbx, qword [rbx + rax]
transient instructions

* Race condition
* Yeah, that’s incredible...

* So mov rbx, qword [rbx + rax] will be
executed, then cancelled...

* But the cache will be loaded

The Meltdown hardware vulnerability (2017)

* Repeating this process for all ; rcx = kernel address
kernel-space address, we can ; rbx = array base address
read the whole physical retry:
memory! mov al, byte [rcx]

* Direct-physical map started at shl rax, 0xc

address Oxffff 8800 0000 0000 on jz retry
Linux systems ©

* Without Kernel Address Space
Layout Randomization (KASLR)

mov rbx, qword [rbx + rax]

» Authors report a 503 KB/s rate

The Spectre hardware vulnerability (2017)

* Kocher, Paul; Genkin, Daniel; Gruss, Daniel;
Haas, Werner; Hamburg, Mike; Lipp, Moritz;
Mangard, Stefan; Prescher, Thomas; Schwarz,
Michael; Yarom, Yuval (2018). Spectre Attacks:
Exploiting Speculative Execution

* The Spectre vulnerability exploit branch O
prediction + speculative execution

SPECTRE

Is there a Fix to Meltdown?

 Solving the problem on the
hardware is tough

* Without all these aggressive
optimizations, CPUs would be
much slower!

Is there a Fix to Meltdown?

 Solving the problem on the
hardware is tough

* Without all these aggressive
optimizations, CPUs would be
much slower!

 What can we do on the software
side?
* The problem comes from the fact

that kernel space is part of the
page table...

1 level
page table

Is there a Fix to Meltdown?

1%t level
page table

* Kernel Page Table Isolation
(KPTI)
* Formerly KAISER

* Kernel Address Isolation to have
Side-channels Efficiently Removed

* [dea: two pages tables per sage table
process (!)
* The full one is used inside kernel

* The second one only covers user
space addresses

Is there a Fix to Meltdown?

1%t level
page table

* Kernel Page Table Isolation
(KPTI)
* Formerly KAISER

* Kernel Address Isolation to have
Side-channels Efficiently Removed

* Overhead e ol

* 5% to 25% slowdown reported on

Haswell/Skylake architectures

* QOuch!

https://www.wooclap.com/SEFOREVER

Pagination: the Big Picture

§

/ kernel g\

%

Pagination: the Big Picture

Pagination: the Big Picture

Pagination: the Big Picture

Pagination: the Big Picture

Pagination: the Big Picture

Pagination: the Big Picture

Optimizing Pagination

* To save memory and to speed up overall process performance, OS kernels
use several aggressive optimizations

 Based on laziness
* Processes ask services

e Kernel says: “Sure!”
e But does not process it immediately
* Later on, WHEN ABSOLUTELY NEEDED, it will be done

* We’'ll explore two of such optimizations
* First-touch memory allocation (aka Lazy allocation)
* Copy-on-Write

First-touch memory allocation

* |dea

* Upon process creation, only a subset of its address space is allocated

e A few virtual pages are allocated right from the start
* The allocation of most pages is postponed

* Pages will be allocated “on demand”
* i.e. when the CPU will access them for the first time

e Benefits

* If a page is never accessed, it will never be allocated
* Better memory utilization!

First-touch memory allocation

* Seriously? Are there some
processes which do not use their . k{
ac

entire code, data, heap or stack
area?

First-touch memory allocation

* Seriously? Are there some
processes which do not use their
. Stack
entire code, data, heap or stack
area’
* Almost every process!

First-touch memory allocation

P

* Seriously? Are there some
processes which do not use their
entire code, data, heap or stack
area?

* Almost every process!

* Maximum Stack Size is 8MB by
default

* Processes only need a fraction of it

* Code is plenty of functions which will
never be called

e Some static arrays won’t be entirely
accessed

First-touch memory allocation

P

* Seriously? Are there some
processes which do not use their . k{
ac

entire code, data, heap or stack
area?

* Almost every process!

* Some pages will be allocated on
demand (X)

* Let’s see if we can observe
address space growth on Linux...

First-touch memory allocation

int main (int argc, char *argvl[])

* Let’s see if we can observe .
address space growth on Linux... int i;
e Accessto [sp—1 * 4096] for (int p = 1; p <= 50; p++) {
* Access to [sp — 2 * 4096] int *approx_sp = &l - 1024 * p;
e Access to [sp—3 * 4096]

*approx_sp = 12; // Weird, isn't it?

printf ("Wrote at address %p (iteration %d)\n",
approx_sp, p);

show_nb_phys_pages ();

* Check if #phys pages increases }

return 0;

5

For the recorad

* KAISER

* kernel address isolation to have side-channels efficiently removed

First-touch memory allocation

Phys. Page

* How does it work?

e Avirtual page which is not
allocated is necessarily marked
invalid in the page table!

e Otherwise, the MMU would proceed
to incorrect translation

Ol |Oo|lrr ||| Valid

0
1
2
3
4
5
6
7
8
9

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

Phys. Page

* How does it work?

e Avirtual page which is not
allocated is necessarily marked
invalid in the page table!

e Otherwise, the MMU would proceed
to incorrect translation

Ol |Oo|lrr ||| Valid

e Access to an invalid page -> page
fault
* How can the kernel distinguish
between
e Lazy allocation
and
* Genuine Segmentation Fault?

O 0o N O U B WN - O

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

=
=
>

Phys. Page

* Kernel must keep information
about lazy allocations
e Stored in the page table?

o

Ol |Oo|lrr ||| Valid
H
(@)

0
1
2
3
4
5
6
7
8
9

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

=
=
>

Phys. Page

o

* Kernel must keep information
about lazy allocations

e Stored in the page table?

* Would lead to allocate unnecessary
2" and 3" |level tables...

Ol |Oo|lrr ||| Valid
H

* In a separate kernel data structure

O 0o N O U B WN - O

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

=
=
>

Phys. Page

* Kernel must keep information
about lazy allocations

e Stored in the page table?

* Would lead to allocate unnecessary
2" and 3" |level tables...

o

8
g
1
1
1|1
0
1
0

* In a separate kernel data structure

* In theory, for each page, the kernel
must keep

O 0o N O U B WN - O

[EY
o

* “should it be allocated on first
touch?”

e “if so, what rights should be set?”

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

* A more compact data structure
is the list of
Virtual Memory Areas (VMA)

* Contiguous series of virtual pages
sharing the same characteristics
* Typically a few dozens of areas

* A list of VMAs is kept for each
process

First-touch memory allocation

* Actually, a more compact
information is the list of
Virtual Memory Areas (VMA)

struct vm area struct
unsigned long vm start;

unsigned long vm end;

pgprot t vm page prot;

unsigned short vm flags;

struct file * vm_file;

Virtual Memory Areas of a process

[jolicoeur] cat /proc/self/maps
55ad0226e000-55ad02276000 r-xp 00000000 : 1573289 /bin/cat
55ad02475000-55ad02476000 r--p 00007000 : 1573289 /bin/cat
55ad02476000-55ad02477000 rw-p 00008000 : 1573289 /bin/cat
55ad02c0d000-55ad02c2e000 rw-p 00000000 : 0 [heap]
7f9a1646b000-7f9a1669e000 r--p 00000000 : 7079259 /usr/lib/locale/locale-archive
7£f9a166a3000-7£9a16838000 r-xp 00000000 : 8131225 /1lib/x86 64-linux-gnu/libc-2.24.s0
7£f9a16838000-7£9a16a38000 ---p 00195000 : 8131225 /1lib/x86 64-linux-gnu/libc-2.24.s0
7£9a16a38000-7£9a16a3c000 r--p 00195000 : 8131225 /1lib/x86 64-linux-gnu/libc-2.24.s0
7£9a16a3c000-7£f%9a16a3e000 rw-p 00199000 : 8131225 /1lib/x86 64-linux-gnu/libc-2.24.s0
7£f9a16a43000-7£9a16a66000 r-xp 00000000 : 8128192 /1lib/x86 64-linux-gnu/ld-2.24.so0
7£f9a16c66000-7£9a16c67000 r--p 00023000 : 8128192 /1lib/x86 64-linux-gnu/1ld-2.24.so0
7£f9a16c67000-7£9a16c68000 rw-p 00024000 : 8128192 /1lib/x86 64-linux-gnu/ld-2.24.so0
7ffeaea77000-7ffeaeca98000 rw-p 00000000 : 0 [stack]

First-touch memory allocation

* VMAs of a process are stored in an AVL tree
 Self-balancing, binary search tree, O(log(n))

7£9a16838000-7£9a16a38000
=P

/ \

55ad02c0d000-55ad02c2e000 7£9a16c66000-7£9a16c67000
Tw=p r--p

55ad02475000-55ad02476000 T7ffeaea77000-7ffeaead8000
r--p rw-p

First-touch memory allocation

=
=
>

Phys. Page

* When a page fault exception
occurs

* The MMU keeps the faulty virtual
address in a special register
e E.g. CR2 register on Intel X86

o

Ol |Oo|lrr ||| Valid
H
(@)

* The kernel searches if the
corresponding virtual page
belongs to an existing VMA

O 0o N O U B WN - O

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

=
=
>

Phys. Page

o

* When a page fault exception
occurs

* The MMU keeps the faulty virtual
address in a special register
e E.g. CR2 register on Intel X86

R|Oo|l~r]|—|~] Valid
H

* The kernel searches if the
corresponding virtual page
belongs to an existing VMA

* Yes -> it’s a first touch allocation

* get free _page () and
fix the page table entry

O 0o N O U B WN - O

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

=
=
>

Phys. Page

o

* When a page fault exception
occurs

* The MMU keeps the faulty virtual
address in a special register
e E.g. CR2 register on Intel X86

Ol |Oo|lrr ||| Valid
H

* The kernel searches if the
corresponding virtual page
belongs to an existing VMA

* No -> It’s a Segmentation Fault

* No mercy!
Send SIGSEGV to process

O 0o N O U B WN - O

[EY
o

|
[N

=
N

[EY
w

H
'S

First-touch memory allocation

e

* Consequences in everyday life

* Large, uninitialized data structures
are allocated one-page-at-a-time

 Significant access time variability
when crossing page boundaries

e Example
e #define DIM 2048
e unsigned image[DIM][DIM];
* (pixels format: RGBA8888)

»

image memory layout

First-touch memory allocation

* Example
* #tdefine DIM 2048

e unsigned image[DIM][DIM];
* (pixels format: RGBA8888) Q a
. . . . f

* “invert” iterative computation & ‘ ”

 Compute negative of previous
image
* imagel[i][j] = neg (imagel[il[j]);

\

First-touch memory allocation

* Example
* #tdefine DIM 2048

e unsigned image[DIM][DIM];
* (pixels format: RGBA8888) Q a
. . . . f

* “invert” iterative computation & ‘ ”
 Compute negative of previous i
image
* imagel[i][j] "= OxFFFFFFOO;

\

First-touch memory allocation

e

e Tiled computation scheme

void do_tile (int x, int y, int width, int height)
{

for (int i = y; i <y + height; i++)

for (int j = x; j < x + width; j++)

image (i, j) = "~OxFFFFFFQO;

for (int y = @; y < DIM; y += TILE_SIZE)
for (int x = @; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE);

First-touch memory allocation

e

e Tiled computation scheme %

void do_tile (int x, int y, int width, int height)
{

for (int i = y; i <y + height; i++)

for (int j = x; j < x + width; j++)

image (i, j) = "~OxFFFFFFQO;

for (int y = @; y < DIM; y += TILE_SIZE)
for (int x = @; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE);

First-touch memory allocation

e

e Tiled computation scheme

void do_tile (int x, int y, int width, int height)
{

for (int i = y; i <y + height; i++)

for (int j = x; j < x + width; j++)

image (i, j) = "~OxFFFFFFQO;

for (int y = @; y < DIM; y += TILE_SIZE)
for (int x = @; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE);

First-touch memory allocation

e

e Tiled computation scheme

void do_tile (int x, int y, int width, int height)
{

for (int i = y; i <y + height; i++)

for (int j = x; j < x + width; j++)

image (i, j) = "~OxFFFFFFQO;

for (int y = @; y < DIM; y += TILE_SIZE)
for (int x = @; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE);

First-touch memory allocation

e

e Tiled computation scheme

void do_tile (int x, int y, int width, int height)
{

for (int i = y; i <y + height; i++)

for (int j = x; j < x + width; j++)

image (i, j) = "~OxFFFFFFQO;

for (int y = @; y < DIM; y += TILE_SIZE)
for (int x = @; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE);

First-touch memory allocation

e

e Tiled computation scheme

void do_tile (int x, int y, int width, int height)

{
for (int i = y; i <y + height; i++)

for (int j = x; j < x + width; j++)

image (i, j) = "~OxFFFFFFQO;

for (int y = @; y < DIM; y += TILE_SIZE)
for (int x = @; x < DIM; x += TILE_SIZE)

do_tile (x, y, TILE_SIZE, TILE_SIZE);

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

* In this example, the first tile

causes 512 page faults

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

* In this example, the first tile

causes 512 page faults

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

* In this example, the first tile

causes 512 page faults

First-touch memory allocation

e

* Where are the pages? y
e 1024 pixels = 4KB = 1 page

* In this example, the first tile

causes 512 page faults
* The second tile involves none

First-touch memory allocation

e

* Let us collect profiling data

void do_tile (int x, int y, int width, int height)
{

tile_start (..);

for (int i = y; i <y + height; i++)

for (lnt J = X; J < X + Wldth; j++)

image (i, j) = "~OxFFFFFFQO;

tile_stop (..);
¥

First-touch memory allocation

* Consequences in everyday life

* Large, uninitialized data structures are allocated one-page-at-a-time
 Significant access time variability when crossing page boundaries

* In an upcoming course, we’ll see that the core responsible for the first-touch
access really matters

* By the way

e calloc # malloc + bzero

First-touch memory allocation

* Consequences in everyday life

* Large, uninitialized data structures are allocated one-page-at-a-time
 Significant access time variability when crossing page boundaries

* In an upcoming course, we’ll see that the core responsible for the first-touch
access really matters

* By the way
e calloc # malloc + bzero

 calloc can efficiently reserve a pool of (blank) virtual pages

* malloc can do as well...
but bzero will immediately trigger allocations

5

The Copy-on-Write mechanism

* Motivation

* Unix Process creation is historically
done in two steps

* fork () & exec ()

The Copy-on-Write mechanism

int main (int argc, char xargvl[])

* Motivation .
* Unix Process creation is historically pid t pid = fork ();
done in two steps if (pid) { // Parent
» fork () & exec ()
} else { // Child

* fork creates a clone

e Child obtains a duplicate of Parent’s ¥
address space return 0;

The Copy-on-Write mechanism

« Motivation {int main (int argc, char xargvl[])

pid_t pid = fork ();
if (pid) { // Parent
wait (NULL);

else { // Child
* fork creates a clone execl ("/bin/1ls", "ls", "-1", NULL);

* Child obtains a duplicate of Parent’s perror ("1s");
address space exit (EXIT_FAILURE);
}
* exec loads a new program return 0;

e User-space part of the child’s
address space is reset

* Unix Process creation is historically
done in two steps

* fork () & exec ()

Process Creation:
fork() replicates the whole bubble!

fork() = replicate

Exec resets user-space content

Re-initialized

kept “as is”

The Copy-on-Write mechanism

* Intrinsically inefficient
* Most of a time, all the pages copied during fork are dropped by exec!

* Parent and Child cannot share the same address space
* |f child doesn’t call exec, both address spaces must evolve independently

* |dea

e Duplicate Parent’s page table
* Both processes share the same physical pages
* Set pages as read-only pages on both sides

RW X

e
©
>

Phys. Page

but nobody can modify

the same set of pages,
a page...

Both processes share

RW X

2
©
>

Phys. Page

-
D
-
qu
-
O
Q
-
Q
-
-
=
-
?
>
@N
@
O
)
-
_I

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* This is where CoW comes into
play!

* When one process tries to write to
a page
* We give him a private copy!

O 00 N O U1 A WN =L O

=
o

[EEY
[EEY

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* This is where CoW comes into
play!

* When one process tries to write to
a page
* We give him a private copy!

* How do we make sure it is not a bad
access?

O 00 N O U1 A WN =L O

=
o

[EEY
[EEY

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

Phys. Page

* This is where CoW comes into
play!

* When one process tries to write to
a page
* We give him a private copy!

* How do we make sure it is not a bad
access?
* Was the “write” flag set before we

decided to make all pages read-
only?

O 00 N O U1 A WN =L O

=
o

[EEY
[EEY

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

Phys. Page

* This is where CoW comes into
play!

* When one process tries to write to
a page
* We give him a private copy!

* How do we make sure it is not a bad
access?
* Was the “write” flag set before we

decided to make all pages read-
only?

O 00 N O U1 A WN =L O

=
o

[EEY
[EEY

e Again, the list of VMAs is our friend!

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

Phys. Page

* This is where CoW comes into
play!

* When one process tries to write to
a page
* The kernel checks the rights stored in

the VMA that the faulty page
belongs to

e “write” flag off?

O 00 N O U1 A WN =L O

* Segmentation Fault
e “write” flag on?

=
o

* We perform a Cow

[EEY
[EEY

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* Copy-on-Write
e Allocate a new physical page
» get free_page() -> 10

0
1
2
3
4
5
6
7
8
9

=
o

[EEY
[EEY

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* Copy-on-Write
e Allocate a new physical page
» get free_page() -> 10
* Copy contents of pp #15 to pp #10

* memcpy

O 00 N O U1 A WN =L O

=
o

[EEY
[EEY

=
N

=
w

ol|lr|r|rr|lo|lo|lo|lo|lo|r |||+~] Valid
[N [P

[EEY
'

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* Copy-on-Write

e Allocate a new physical page
» get free_page() -> 10

* Copy contents of pp #15 to pp #10
* memcpy

* Fix the page table
* New physical page number
* Rights from VMA

R[]~] Valid

0
1
2
3
4
5
6
7
8
9

[EEY
[EEY

=
N

=
w

[EEY
(@
O|lFR|kPR|IR|IO|O|O|O|O

N

[EEY
'

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* Copy-on-Write

e Allocate a new physical page
» get free_page() -> 10

e Copy contents of pp #15 to pp #30
* memcpy

* Fix the page table
* New physical page number
* Rights from VMA

R[]~] Valid

0
1
2
3
4
5
6
7
8
9

* Physical page #15 is no longer
shared by current process

[EEY
[EEY

=
N

=
w

[EEY
(@
O|lFR|kPR|IR|IO|O|O|O|O

N

[EEY
'

RW X

e
©
>

Phys. Page

Situation after CoWw...

RW X

2
©
>

Phys. Page

-
D
-
qu
-
O
Q
-
Q
-
-
=
-
?
>
@N
@
O
)
-
_I

RW X

e
©
>

Phys. Page

Situation after CowW
Shall we do something for P,?

RW X

2
©
>

Phys. Page

-
D
-
qu
-
O
Q
-
Q
-
-
=
-
?
>
@N
@
O
)
-
_I

The Copy-on-Write mechanism

o)
=
>

Phys. Page

* Copy-on-Write
» After P,’s page table is fixed, we

feel like we should also fix page
table of P,
e Otherwise, if P, attempts to write to

virtual page #5, we’ll perform a silly
copy-on-write!

8
S
1
1
1
1
1

O 00 N O U1 A WN =L O

[EEY
[EEY

=
N

=
w

[EEY
(@
O|lFR|kPR|IR|IO|O|O|O|O

N

[EEY
'

The Copy-on-Write mechanism

Phys. Page

* Copy-on-Write
» After P,’s page table is fixed, we

feel like we should also fix page
table of P,
e Otherwise, if P, attempts to write to

virtual page #5, we’ll perform a silly
copy-on-write!

8
S
1
1
1
1
1

* OK, but how do we know the list of
processes sharing a physical page?
* Indeed, there can be many
processes sharing a single page

O 00 N O U1 A WN =L O

[EEY
[EEY

=
N

* fork() cascade...

=
w

[EEY
(@
O|lFR|kPR|IR|IO|O|O|O|O

N

[EEY
'

The Copy-on-Write mechanism

* Copy-on-Write
» After P,’s page table is fixed, we
feel like we should also fix page
table of P,
e Otherwise, if P, attempts to write to

virtual page #5, we’ll perform a silly
copy-on-write!!

* OK, but how do we know the list of
processes sharing a physical page?

* Indeed, there can be many
processes sharing a single page

* fork() cascade...

Physical

addresses

O R, N W b U1 O N 0 O

The Copy-on-Write mechanism

 Shall we keep, for each physical
page, a list of owners?

* This way, after a CoW, we can fix
the table of the lonely owner of a
page if needed

* But maintaining lists of processes
is costly

Physical
addresses

O R, N W b U1 O N 0 O

The Copy-on-Write mechanism

* We can maintain a simple
reference counter instead

unsigned refcount[#PhysPages];
* Increased by fork ()
* Decreased by CoW

* We can no longer fix the
pageTable of the last owner...

* We can’t avoid the disgrace of an
extra page fault @

Physical

addresses

O R, N W b U1 O N 0 O

refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

refcount:

The Copy-on-Write mechanism

* We can no longer fix the
pageTable of the last owner...

 However, when a page fault
occurs, the last owner sees
refcount =1

* He can avoid a silly CoW and just fix
his table

Physical

addresses

O R, N W b U1 O N 0 O

refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:
refcount:

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

refcount:

The Copy-on-Write mechanism

* Wrap-up
* The CoW mechanism allows multiple processes to share pages as long as they
do not attempt to modify them

* It’s incredibly effective given that fork() is usually followed by exec()...

* |t’s also useful with shared memory-mapped files
* (to be explored in next chapter)

5

Additional resources
available on

http://gforgeron.gitlab.io/se/

