
Operating Systems:
On-disk paging

Raymond Namyst
Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/se/ 

1

https://gforgeron.gitlab.io/se/


Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails

2



Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
• Process growth fails

3



Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
• Process growth fails
• Lazy allocation fails

4



Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
• Process growth fails
• Lazy allocation fails
• Copy-on-Write fails

5



Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
• Process growth fails
• Lazy allocation fails
• Copy-on-Write fails
• What a mess! 😱

6



Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
• Process growth fails
• Lazy allocation fails
• Copy-on-Write fails
• What a mess! 😱

• Disks have a larger capacity
• We could use disk space as a RAM extension

7



Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk

8

CPU RAM

Disk

kernel
get_free_page ()
{
… 

}



Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk

9

CPU RAM

Disk

kernel
get_free_page ()
{
… 

}



Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk

10

CPU RAM

Disk

kernel
get_free_page ()
{
… 

}



Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk

11

CPU RAM

Disk

kernel
get_free_page ()
{
… 

}



Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk

• Is it possible for a CPU to access 
disk storage transparently?

• Could we choose a smarter 
RAM/disk distribution?

12

CPU RAM

Disk

kernel
get_free_page ()
{
… 

}



Technical considerations

• Is it possible for a CPU to access 
disk storage transparently?
• Devices can be assigned a range of 

physical addresses on the I/O bus 
• With 39-bit physical addresses, we can 

not only address RAM, but also any 
other addressable device

• A CPU read/write inside this range is 
redirected to the device
• Typically used to access device 

configuration registers

• This range can be mapped to a process 
address space
• Eg. Dolphin “Scalable Coherent 

Interface” [1992]

13

CPU RAM

Disk



Technical considerations

• Is it possible for a CPU to access 
disk storage transparently?
• Yes, in theory, this would be 

possible… however
• This would involve sending PCI 

requests for each individual access 
• Coalescing is possible, but only for 

small bursts
• Would lead to poor performance!

• Disks (either hard drives or SSD) 
perform block-based transfers
• E.g. 512B or 1K

14

CPU RAM

Disk



Technical considerations

• Is it possible for a CPU to access 
disk storage transparently?
• Even if it was possible

• Latency would kill us!
• Accessing a word on a disk is 

significantly slower than accessing a 
variable in RAM
• How much slower?

15

CPU RAM

Disk



Scale of Computer Latencies

• CPU cycle: 0.3 ns (Core i7 3 GHz)
• L1 cache: 1 ns 
• L2 cache: 5 ns
• L3 cache: 20 ns
• RAM: 50 ns
• NVMe SSD: 20 µs
• Sata SSD: 150 µs
• Hard Drive: 3 ms

16



Quizz time
Hard drives specifications

17



On-disk paging

• As a result, pages stored on disk 
will become…
 “temporarily unreachable”
• What does this mean?

• Swapped-out pages must be marked 
“invalid” in their owner’s page table

18

CPU RAM

Disk



On-disk paging

• As a result, pages stored on disk 
will become…
 “temporarily unreachable”
• What does this mean?

• Swapped-out pages must be marked 
“invalid” in their owner’s page table

• A page fault corresponding to a 
swapped-out page must bring the 
page back to memory (swap-in)
• What if the RAM is still full?
• What if it happens too frequently?

19

CPU RAM

Disk



On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it must be allocated in RAM

20

CPU RAM

Disk



On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it must be allocated in RAM

• Another (victim) page should be 
swapped out

21

CPU RAM

Disk

9

victim



On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it must be allocated in RAM

• Another (victim) page should be 
swapped out
• A disk slot is allocated

22

CPU RAM

Disk
1

9



On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it should be allocated in RAM

• Another (victim) page should be 
swapped out
• A disk slot is allocated
• Page is written to disk
• The page table entry is marked 

invalid

23

CPU RAM

Disk
1

9

swap-out



On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it should be allocated in RAM

• Another (victim) page should be 
swapped out
• A disk slot is allocated
• Page is written to disk
• The page table entry is marked 

invalid

24

CPU RAM

Disk



Handling swapped-out pages

25

CPU RAM

Disk

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
9 06

07
08
09
010

11 111
012
013
014

R

1
1
1

1

1

W

0
0
0

1

1

X

1
1
1

0

0

Let’s assume virtual page #6
is swapped out and stored in slot #1



Handling swapped-out pages

26

CPU RAM

Disk

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
??? 06

07
08
09
010

11 111
012
013
014

R

1
1
1

1

1

W

0
0
0

1

1

X

1
1
1

0

0

Let’s assume virtual page #6
is swapped out and stored in slot #1

Where do we store this information?



Handling swapped-out pages

27

CPU RAM

Disk

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
??? 06

07
08
09
010

11 111
012
013
014

R

1
1
1

1

1

W

0
0
0

1

1

X

1
1
1

0

0

Let’s assume virtual page #6
is swapped out and stored in slot #1

Where do we store this information?

How do we distinguish
 swapped-out pages

and
lazily allocated

 pages?



Handling swapped-out pages

28

CPU RAM

Disk

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
1 06

07
08
09
010

11 111
012
013
014

R

1
1
1

1

1

W

0
0
0

1

1

X

1
1
1

0

0

Let’s assume virtual page #6
is swapped out and stored in slot #1

We can use all fields but “valid”
to store the slot number



Handling swapped-out pages

29

CPU RAM

Disk

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
index 06

07
08
09
010

11 111
012
013
014

R

1
1
1

1

1

W

0
0
0

1

1

X

1
1
1

0

0

Let’s assume virtual page #6
is swapped out and stored in slot #1

Actually, there is not enough space
to store

<dev, block>

So an index in a
 “swap_info” array

is stored



Finding a good victim

• We should choose a page
• Which has a low probability to be 

requested again soon
• Because we don’t have fun swapping 

pages in & out

30

CPU RAM



Finding a good victim

• We should choose a page
• Which has a low probability to be 

requested again soon
• Because we don’t have fun swapping 

pages in & out

• More precisely
• The optimal algorithm should select 

the page whose next use will occur 
farthest in the future

• Sounds good!
• But in practice, we have no idea…

31

CPU RAM



Page replacement algorithms

• Simple algorithms are often the 
best ones

32

CPU RAM



Page replacement algorithms

• Simple algorithms are often the 
best ones
• How about using FIFO?

• The OS keeps the date of ”arrival” of 
pages in RAM

33

CPU RAM



Page replacement algorithms

• Simple algorithms are often the 
best ones
• How about using FIFO?

• The OS keeps the date of ”arrival” of 
pages in RAM

• Unfortunately, the FIFO replacement 
strategy has a severe flaw
• FIFO does not belong to the class of 

Stack-based algorithms
• ”The set of pages in memory for N 

frames is always a subset of the set of 
pages that would be in memory with 
N + 1 frames”

34

CPU RAM



Belady’s anomaly with FIFO

• Belady, An anomaly in space-time characteristics of certain programs 
running in a paging machine, Communications of the ACM, 1969.

• Let us consider the following series of page reclaims
• 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• It can be shown that this reference list causes more page faults with a 
4-frame RAM than with a 3-frame one…
• The more RAM you have, the worser it behaves L

35



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

36



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1

37



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1

2

38



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1

2 2

3

39



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4

2 2 2

3 3

40



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4

2 2 2 1

3 3 3

41



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4

2 2 2 1 1

3 3 3 2

42



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5

2 2 2 1 1 1

3 3 3 2 2

43



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5

2 2 2 1 1 1 1

3 3 3 2 2 2

44



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5

2 2 2 1 1 1 1 1

3 3 3 2 2 2 2

45



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5 5

2 2 2 1 1 1 1 1 3

3 3 3 2 2 2 2 2

46



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3

3 3 3 2 2 2 2 2 4

47



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3

3 3 3 2 2 2 2 2 4 4

48



Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3

3 3 3 2 2 2 2 2 4 4

49

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 5 5 5 5 4 4

2 2 2 2 2 2 1 1 1 1 5

3 3 3 3 3 3 2 2 2 2

4 4 4 4 4 4 3 3 3



Page replacement algorithms

• So we’d better stick to stack-
based algorithms such as
• LFU (Least Frequently Used)
• LRU (Least Recently Used)

• How to count the number of 
accesses to each page?
• Do we really want to use NFU?

• How to store the last access time 
of each page?

50

CPU RAM



Page replacement algorithms

• Only one hardware component 
can do it: the MMU

• When a virtual page is accessed, 
the MMU sets the 
corresponding accessed bit in 
the page table
• It is up to the kernel to periodically 

test and reset this bit…

51

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
0

0

0

Ac
ce

ss
ed



Page replacement algorithms

• Only one hardware component 
can do it: the MMU

• When a virtual page is accessed, 
the MMU sets the 
corresponding accessed bit in 
the page table
• It is up to the kernel to periodically 

test and reset this bit…

52

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
1

0

0

Ac
ce

ss
ed



Page replacement algorithms

• Only one hardware component 
can do it: the MMU

• When a virtual page is accessed, 
the MMU sets the 
corresponding accessed bit in 
the page table
• It is up to the kernel to periodically 

test and reset this bit…

53

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
1

0

1

Ac
ce

ss
ed



Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

54

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
1

0

1

Ac
ce

ss
ed

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

[xyz]

Approx.
last access 

time 



Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page

55

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
1

0

1

Ac
ce

ss
ed

[xyz]

[xyz]

[1xy]

[xyz]

[xyz]

[0xy]

[xyz]

[xyz]

[xyz]

[xyz]

[0xy]

[0xy]

[xyz]

[xyz]

[1xy]

[xyz]

Approx.
last access 

time 



Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page

56

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
0

0

0

Ac
ce

ss
ed

[xyz]

[xyz]

[1xy]

[xyz]

[xyz]

[0xy]

[xyz]

[xyz]

[xyz]

[xyz]

[0xy]

[0xy]

[xyz]

[xyz]

[1xy]

[xyz]

Approx.
last access 

time 



Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page

57

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
0

1

1

Ac
ce

ss
ed

Approx.
last access 

time 

[xyz]

[xyz]

[1xy]

[xyz]

[xyz]

[0xy]

[xyz]

[xyz]

[xyz]

[xyz]

[0xy]

[0xy]

[xyz]

[xyz]

[1xy]

[xyz]



Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page

58

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
0

1

1

Ac
ce

ss
ed

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Quizz time

59



Page replacement algorithms

• Now we have an “approximate 
last access time” for each 
physical pages
• Can be used to implement a 

pseudo-LRU policy
• 11x is more ”important” than 10x, 

which is more important than 01x, 
etc.

• E.g. Physical pages 2 and 4 (stamped 
“00x“) are a good candidates for 
being evicted from RAM

60

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
0

0

0

Ac
ce

ss
ed

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Page replacement algorithms

• Should our algorithm be local or 
global?
• Local

• Search victim among pages from 
current process

• Global
• Inspect all pages before deciding

61

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Page replacement algorithms

• Should our algorithm be local or 
global?
• Local

• Search victim among pages from 
current process

• Would tend to keep the number of 
resident pages constant

62

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Page replacement algorithms

• Should our algorithm be local or 
global?
• Global

• Inspect all pages before deciding
• Treat all processes equally?

• Or consider evicting pages from the 
biggest?

63

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Page replacement algorithms

• Should our algorithm be local or 
global?
• Global

• Inspect all pages before deciding
• Treat all processes equally?

• Or consider evicting pages from the 
biggest?

• Take from the rich and give to the 
poor, uh?

64

Errol Flynn, The Adventures of Robin Hood, 1938.



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

65



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

66



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

67



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

68



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

69



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

70



Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy

71



The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• The OS can track the number of 

page faults per second when
• 1 resident page is granted
• 2 resident pages are granted
• 3 resident pages are granted
• Etc.

72

page faults
rate

resident pages

Pi



The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• The OS can track the number of 

page faults per second when
• 1 resident page is granted
• 2 resident pages are granted
• 3 resident pages are granted
• Etc.

73

page faults
rate

resident pages

Pi



The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• Beyond an “acceptable threshold”, 

the page fault rate incurs a severe 
slowdown

74

page faults
rate

resident pages

Pi

Acceptable
threshold



The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• Beyond an “acceptable threshold”, 

the page fault rate incurs a severe 
slowdown
• This gives a lower bound on the 

number of pages which should stay 
in RAM for Pi

75

page faults
rate

resident pages

Pi

Acceptable
threshold

lower
bound



The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• Beyond an upper bound, the page 

fault rate doesn’t decrease any 
more

76

page faults
rate

resident pages

Pi

Acceptable
threshold

lower
bound

upper
bound

almost
flat



The notion of Working Set

• Keeping the number of resident 
pages ∈ [lower..upper] is ideal

• When searching for a victim
• We should consider processes which 

live far beyond their lower bound

• In practice, modern OSes 
approximate the WS to
• “pages which have been accessed 

during a predefined period”

77

page faults
rate

resident pages

Pi

Acceptable
threshold

lower
bound

upper
bound

almost
flat



The notion of Working Set

• Keeping the number of resident 
pages ∈ [lower..upper] is ideal

• Note that it may be impossible
• Too many ready processes
=> Trashing

• Avoiding trashing
• Gang scheduling
• Process swapping

78

page faults
rate

resident pages

Pi

Acceptable
threshold

lower
bound

upper
bound

almost
flat



Page replacement algorithms

• Recap
• When RAM is full

• A victim page must be evicted to satisfy a new 
allocation

• The kernel is able to compute an 
approximation of the last access time for 
each physical page
• A page which is not accessed for a long period 

(taking the virtual time of processes into 
account) does not belong to a working set
• Good candidate
• [see WSClock algorithm]

79

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Page replacement algorithms

• Side notes
• How do we find the PTE (Page Table Entry) pointing on a physical page?

• Reverse mapping stored in a structure associated to each physical page

• How to swap-out shared pages?
• What if RAM mostly contains shared pages?

80



Bringing pages back to RAM

81

CPU RAM

Disk

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
1 06

07
08
09
010

11 111
012
013
014

R

1
1
1

1

1

W

0
0
0

1

1

X

1
1
1

0

0

If process accesses virtual page #6:
1. Page fault raised
2. get_free_page() is called to allocate

a new physical frame
(note: this may trigger a swap-out)

3. Read page from disk (slot #1)
and write to new frame

4. Fix page table entry to
reference new frame



Bringing pages back to RAM

• In the worst case, two I/O operations are involved before the process 
can resume its execution
• Too slow!

• Several optimizations can be used
• Swap-outs can be anticipated
• Some swap-outs can be avoided

82



Avoiding Swap-outs

• When a page has already been 
swapped-out, and is now back to 
memory
• The swap slot can be kept as is
• If the page is not modified until it 

must be evicted again
• i.e., the page is “clean”
• Then no disk write is need

• If the page was modified in the 
meantime
• i.e., the page is ”dirty”
• Then it must be swapped-out again

83

CPU RAM

Disk
1

9



Avoiding Swap-outs

• Detecting if the page was 
modified could be done by 
removing the ‘w’ access mode
• Too expensive

• Page table entries feature a dirty 
bit
• Set by MMU on each write access
• Cleared by OS when page is 

installed in RAM

84

Phys. Page Va
lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
1
1

0

1

Ac
ce

ss
ed

0
0
1

0

0

Di
rt

y



Anticipating swap-outs

• A kernel DAEMON thread 
(kswapd) keeps maintaining a 
threshold of free pages in RAM
• When the reserve of free pages is 

too small, the thread frees pages 
“in the background”

• Most of the time, get_free_page() 
finds a free frame immediately!

85

CPU RAM

Disk
1

9

Direct Memory Access
(DMA)



Additional resources
available on

http://gforgeron.gitlab.io/se/

86

http://gforgeron.gitlab.io/se/

