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 When main memory (i.e. RAM) is full

* No more page can be allocated, so

* Process creation fails

* Process growth fails
Lazy allocation fails
Copy-on-Write fails
What a mess! @&

* Disks have a larger capacity
* We could use disk space as a RAM extension
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Motivation

* When the RAM is full, we could
satisfy upcoming allocations on
disk

* |Is it possible for a CPU to access
disk storage transparently?

 Could we choose a smarter
RAM/disk distribution?

get_free_page ()
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Technical considerations

* Is it possible for a CPU to access
disk storage transparently?
* Devices can be assigned a range of
physical addresses on the 1/0 bus

* With 39—bitOthsicaI addresses, we can
not only address RAM, but also any
other addressable device

* A CPU read/write inside this range is
redirected to the device

* Typically used to access device
configuration registers

* This range can be mapped to a process
address space

* Eg. Dolphin “Scalable Coherent
Interface” [1992]




Technical considerations

* s it possible for a CPU to access
disk storage transparently?

* Yes, in theory, this would be
possible... however

* This would involve sending PCl
requests for each individual access

* Coalescing is possible, but only for
small bursts

* Would lead to poor performance!

* Disks (either hard drives or SSD)
perform block-based transfers

* E.g.512Bor 1K




Technical considerations

* s it possible for a CPU to access
disk storage transparently?

* Even if it was possible
e Latency would kill us!

e Accessing a word on a disk is
significantly slower than accessing a
variable in RAM

* How much slower?
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On-disk paging

* As a result, pages stored on disk
will become...
“temporarily unreachable”

e What does this mean?

* Swapped-out pages must be marked
“invalid” in their owner’s page table
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On-disk paging

* As a result, pages stored on disk
will become...
“temporarily unreachable”

e What does this mean?

* Swapped-out pages must be marked
“invalid” in their owner’s page table

* A page fault corresponding to a

BIN
swapped-out page must bring the
page back to memory (swap-in) INRRNNND

« What if the RAM is still full? BRI
 What if it happens too frequently? D D D D D D D D
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On-disk paging

* Let’s calm down and rewind...

* When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it must be allocated in RAM
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On-disk paging

e Let’s calm down and rewind...
e When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it must be allocated in RAM

* Another (victim) page should be
swapped out DIN

* A disk slot is allocated Hagodoot
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e Let’s calm down and rewind...
e When the RAM is full and
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On-disk paging

e Let’s calm down and rewind...
e When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it should be allocated in RAM

* Another (victim) page should be
swapped out DIN

* Adisk slot is allocated Dl DD DDDD
* Page is written to disk oot
 The page table entry is marked D D D D D D D D

nvale 00000000




Handling swapped-out pages
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Handling swapped-out pages
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Let’s assume virtual page #6
is swapped out and stored in slot #1
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Handling swapped-out pages
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Let’s assume virtual page #6

is swapped out and stored in slot #1

Actually, there is not enough space

to store
<dev, block>

So anindexin a
“swap_info” array
is stored
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Finding a good victim

* We should choose a page
* Which has a low probability to be
requested again soon

e Because we don’t have fun swapping
pages in & out




Finding a good victim

* We should choose a page
* Which has a low probability to be
requested again soon

e Because we don’t have fun swapping
pages in & out

* More precisely

* The optimal algorithm should select
the page whose next use will occur
farthest in the future

e Sounds good!
e Butin practice, we have no idea...
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Page replacement algorithms

* Simple algorithms are often the
best ones

* How about using FIFO?

* The OS keeps the date of “arrival” of
pages in RAM

* Unfortunately, the FIFO replacement
strategy has a severe flaw

* FIFO does not belong to the class of
Stack-based algorithms

* “The set of pages in memory for N
frames is always a subset of the set of
pages that would be in memory with
N + 1 frames”




Belady’s anomaly with FIFO

* Belady, An anomaly in space-time characteristics of certain programs
running in a paging machine, Communications of the ACM, 1969.

* Let us consider the following series of page reclaims
«1,2,3,4,1,2,5/1,2,3,4,5

* It can be shown that this reference list causes more page faults with a
4-frame RAM than with a 3-frame one...

* The more RAM you have, the worser it behaves ®
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Page replacement algorithms

e So we'd better stick to stack-
based algorithms such as
* LFU (Least Frequently Used)
* LRU (Least Recently Used)

* How to count the number of
accesses to each page?
* Do we really want to use NFU?

e How to store the last access time
of each page?




Page replacement algorithms
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 When a virtual page is accessed,
the MMU sets the
corresponding accessed bit in
the page table

* |tis up to the kernel to periodically
test and reset this bit...
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Page replacement algorithms

* Only one hardware component
can do it: the MMU

 When a virtual page is accessed,
the MMU sets the
corresponding accessed bit in
the page table

* |tis up to the kernel to periodically
test and reset this bit...
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Approx.
Physical last access
addresses time
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Page replacement algorithms
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 Periodically, the kernel can walk
through the page table and read
(& reset) the accessed bit for
each page
e Sampling

* Information = “was this page
accessed during the last period”?
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 Periodically, the kernel can walk

through the page table and read
(& reset) the accessed bit for
each page

e Sampling

* Information = “was this page
accessed during the last period”?
* Aging

e Kernel can maintain an
approximation of last access time
per physical page
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 Periodically, the kernel can walk

through the page table and read
(& reset) the accessed bit for
each page

e Sampling

* Information = “was this page
accessed during the last period”?
* Aging

e Kernel can maintain an
approximation of last access time
per physical page
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through the page table and read
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accessed during the last period”?
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per physical page

=
SN

=
w

O |O|O| Accessed
[y
n

Xy
Xy

=
N

|—\ = [~ Valid

=
|

=
o

O 0o N O U1 A WN =L O

[EY
o

[
[y

=
N

[EY
w

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

H
'S







Page replacement algorithms

* Now we have an “approximate
last access time” for each
physical pages

* Can be used to implement a
pseudo-LRU policy

e 11xis more "important” than 10x,
which is more important than 01x,
etc.

e E.g. Physical pages 2 and 4 (stamped
“00x“) are a good candidates for
being evicted from RAM

O 0o N O U1 A WN =L O

L el
5 W N RO

Phys. Page

=
=
>

2

L[|~ |~ Valid

O |O|O| Accessed

S T O o S o S
O RLr N W b U

O KL N W b U1 O N 0 O

Physical
addresses

Approx.
last access
time

XyZ]
Xy
X
Xy
Xy

1
Xy
Xy

Xy

X

X

0

[

[xyz]
[xyz]
[xyz]
[xyz]
[11x]
[xyz]
[xyz]
[xyz]
[xyz]
[01x]
[00x]
[xyz]
[00x]
[xyz]
[10x]




Page replacement algorithms

* Should our algorithm be local or
global?

e Local

e Search victim among pages from
current process

* Global

* Inspect all pages before deciding
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Page replacement algorithms

Physical last access
addresses time
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* Should our algorithm be local or
global?

e Local

e Search victim among pages from
current process

* Would tend to keep the number of
resident pages constant
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Page replacement algorithms

Physical last access
addresses time
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global?
* Global

* Inspect all pages before deciding

* Treat all processes equally?

e Or consider evicting pages from the
biggest?
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Page replacement algorithms

* Should our algorithm be local or
global?
* Global

* Inspect all pages before deciding

* Treat all processes equally?

e Or consider evicting pages from the
biggest?

e Take from the rich and give to the
poor, uh?

Errol Flynn, The Adventures of Robin Hood, 1938.
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The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
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The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* Beyond an “acceptable threshold”,
the page fault rate incurs a severe
slowdown

* This gives a lower bound on the Acceptable
number of pages which should stay threshold
in RAM for P,
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The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* Beyond an upper bound, the page
fault rate doesn’t decrease any
more

Acceptable
threshold

»
»

resident pages




The notion of Working Set

page faults
rate 4

* Keeping the number of resident
pages € [lower..upper] is ideal

* When searching for a victim

* We should consider processes which
live far beyond their lower bound

Acceptable
threshold

* In practice, modern OSes
approximate the WS to

* “pages which have been accessed ident pag;s
during a predefined period”




The notion of Working Set

* Keeping the number of resident
pages € [lower..upper] is ideal

* Note that it may be impossible

* Too many ready processes
=> Trashing

* Avoiding trashing
e Gang scheduling
* Process swapping

page faults
rate 4

Acceptable

threshold

»

»

resident pages




Page replacement algorithms

* Recap
* When RAM is full

e Avictim page must be evicted to satisfy a new
allocation

* The kernel is able to compute an
approximation of the last access time for
each physical page

* A page which is not accessed for a long period

(taking the virtual time of processes into
account) does not belong to a working set

* Good candidate
e [see WSClock algorithm]
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Physical
addresses

Approx.
last access




Page replacement algorithms

e Side notes

 How do we find the PTE (Page Table Entry) pointing on a physical page?
* Reverse mapping stored in a structure associated to each physical page

* How to swap-out shared pages?
* What if RAM mostly contains shared pages?




Bringing pages back to RAM
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If process accesses virtual page #6:
1. Page fault raised
2. get_free_page() is called to allocate

a new physical frame
(note: this may trigger a swap-out)

. Read page from disk (slot #1)
and write to new frame /\
. Fix page table entry to v

reference new frame
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Bringing pages back to RAM

* In the worst case, two I/O operations are involved before the process
can resume its execution
* Too slow!

 Several optimizations can be used

e Swap-outs can be anticipated
* Some swap-outs can be avoided




Avoiding Swap-outs

* When a page has already been
swapped-out, and is now back to
memory

* The swap slot can be kept as is

* If the page is not modified until it
must be evicted again

* i.e., the page is “clean”
* Then no disk write is need
* |f the page was modified in the Disk

meantime 1 |NinnnEn

* i.e., the page is "dirty” U000
* Then it must be swapped-out again O000000T

Hodtoogt




Avoiding Swap-outs

Dirty
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Phys. Page
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* Detecting if the page was
modified could be done by
removing the ‘w’ access mode

* Too expensive
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* Page table entries feature a dirty
bit
* Set by MMU on each write access

* Cleared by OS when page is
installed in RAM
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Anticipating swap-outs

* A kernel DAEMON thread
(kswapd) keeps maintaining a
threshold of free pages in RAM

* When the reserve of free pages is
too small, the thread frees pages
“in the background”

* Most of the time, get_free page()
finds a free frame immediately!
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Additional resources
available on



http://gforgeron.gitlab.io/se/

