Operating Systems:
On-disk paging

Raymond Namyst

Dept. of Computer Science

University of Bordeaux, France

https://gforgeron.gitlab.io/se/

Motivation

 When main memory (i.e. RAM) is full

* No more page can be allocated, so
* Process creation fails

Motivation

 When main memory (i.e. RAM) is full

* No more page can be allocated, so

* Process creation fails
* Process growth fails

Motivation

 When main memory (i.e. RAM) is full

* No more page can be allocated, so
* Process creation fails
* Process growth fails
* Lazy allocation fails

Motivation

 When main memory (i.e. RAM) is full

* No more page can be allocated, so
* Process creation fails
* Process growth fails
* Lazy allocation fails
e Copy-on-Write fails

Motivation

 When main memory (i.e. RAM) is full

* No more page can be allocated, so
* Process creation fails
* Process growth fails
Lazy allocation fails
Copy-on-Write fails
What a mess! @&

Motivation

 When main memory (i.e. RAM) is full

* No more page can be allocated, so

* Process creation fails

* Process growth fails
Lazy allocation fails
Copy-on-Write fails
What a mess! @&

* Disks have a larger capacity
* We could use disk space as a RAM extension

MOUVathn get_free_page ()

* When the RAM is full, we could
satisfy upcoming allocations on
disk

MOUVathn get_free_page ()

* When the RAM is full, we could
satisfy upcoming allocations on
disk

MOUVathn get_free_page ()

* When the RAM is full, we could
satisfy upcoming allocations on
disk

DI
BU0O0O0O0

qudbogbog
qoooogod

Hodtoogt

MOUVathn get_free_page ()

* When the RAM is full, we could
satisfy upcoming allocations on
disk

DI
BR00UUO0O0

qudbogbog
qoooogod

Hodtoogt

Motivation

* When the RAM is full, we could
satisfy upcoming allocations on
disk

* |Is it possible for a CPU to access
disk storage transparently?

 Could we choose a smarter
RAM/disk distribution?

get_free_page ()

Disk
IRRRENNR

1 111 innn

Technical considerations

* Is it possible for a CPU to access
disk storage transparently?
* Devices can be assigned a range of
physical addresses on the 1/0 bus

* With 39—bitOthsicaI addresses, we can
not only address RAM, but also any
other addressable device

* A CPU read/write inside this range is
redirected to the device

* Typically used to access device
configuration registers

* This range can be mapped to a process
address space

* Eg. Dolphin “Scalable Coherent
Interface” [1992]

Technical considerations

* s it possible for a CPU to access
disk storage transparently?

* Yes, in theory, this would be
possible... however

* This would involve sending PCl
requests for each individual access

* Coalescing is possible, but only for
small bursts

* Would lead to poor performance!

* Disks (either hard drives or SSD)
perform block-based transfers

* E.g.512Bor 1K

Technical considerations

* s it possible for a CPU to access
disk storage transparently?

* Even if it was possible
e Latency would kill us!

e Accessing a word on a disk is
significantly slower than accessing a
variable in RAM

* How much slower?

The Smle ()f To computers, we humans work on a completely

different time scale, practieally geologic time. Which

Comput]ng is completely mind-bending. The faster computers

get, the bigger this time disparity grows.

Scale of Computer Latencies [RECTEEEEEES

ONE CPU CYCLE L1 CACHE ACCESS L2 CACHE ACCESS L3 CACHE ACCESS MUTEX LOCK/UNLOCK

OR IS EQUAL TO 0R 18 EQUAL T0 071 EQUAL TO OR 15 EQUAL TO OR1S EQUAL TO

CPU cycle: 0.3 ns (Corei7 3 GHz) ¢

Clapping Bill Gates e o
your hands carning§2.2s0 Levlrispeedrun your dishes

L1 cache 1 ns

READ 1M BYTES
MAIN MEMORY ACCESS COMPRESS 1KB WITH ZIPPY SEQUENTIALLY FROM MEMORY S0 RANDOM READ SOLID-STATE DISK 110

L2 cache: 5ns SN M RS W mes

m

0 OF g
L3 cac h e 2 O ns “Bohemian ~ “Valching USworkday NewYork "US domestie
Rha package
[]
RAM: 50 ns LD, BN RSN s

LT 0715 EQUAL TO OR 1S EQUAL TO IR 15 EQUAL TO

NVMe SSD: 20 ps n ™
Sata SSD: 150 us
Hard Drive: 3 ms - ' i

N YESEMITE RATIONAL PARK FYOUVENEVERDORE O « 0L
ATTENDING * SRADEATING a3 veans e, 3,000 YEARS RGO, PEOPLE STARTED 000 YEARS ABD, THE PRARADHS STIL 32,000 TEARS K60, THE AREA TANT IS THE
N A

LT fiitprivh et
S hakespeare wearing pants ruled Egypt Sahara desertwas
1Y AW S Wkt waare g - - well-watered

INTERNET: SF 0 AYC 08 VIRTUALIZATION REBOOT scsi coumaND TiMe-gur HARDWARE BRTUALIZATION

PHYSICAL SYSTEM REBODT

ORIBNALCORCEP, PETERNORVG: NORVE OMZL-ONS AINLAMSWERS @ 0y o pio STSTEMS PERFORMANCE: ETERPISE - CLOUDSY BREADA BREE: UNTOLCOM DPDLS3800%1
COLIN SCOTT: ECS.BERKELEY EDU/-RCS/RESEARCH/INTERACTIVE LATENCY HTML ATGT US NETWORK LATENCIES: IPHETWORK BGTO.IPATLNET/PMWSINETWORK DELAYHTL

5

On-disk paging

* As a result, pages stored on disk
will become...
“temporarily unreachable”

e What does this mean?

* Swapped-out pages must be marked
“invalid” in their owner’s page table

Disk

INRNNNND
| | Iunin
Jodtoogt

Hodtoogt

On-disk paging

* As a result, pages stored on disk
will become...
“temporarily unreachable”

e What does this mean?

* Swapped-out pages must be marked
“invalid” in their owner’s page table

* A page fault corresponding to a

BIN
swapped-out page must bring the
page back to memory (swap-in) INRRNNND

« What if the RAM is still full? BRI
 What if it happens too frequently? D D D D D D D D

Hodtoogt

On-disk paging

* Let’s calm down and rewind...

* When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it must be allocated in RAM

Disk

Jodtoogt
qudbogbog
Jodtoogt

Hodtoogt

On-disk paging

* Let’s calm down and rewind...

* When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it must be allocated in RAM

* Another (victim) page should be
swapped out

Disk

Jodtoogt
qudbogbog
Jodtoogt

Hodtoogt

On-disk paging

e Let’s calm down and rewind...
e When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it must be allocated in RAM

* Another (victim) page should be
swapped out DIN

* A disk slot is allocated Hagodoot
HOooouoon
HOoouooUo

Hodtoogt

On-disk paging

e Let’s calm down and rewind...
e When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it should be allocated in RAM

* Another (victim) page should be
swapped out DIN

e Adisk slotis allocated D I DD DDDD

e Page is written to disk D D D D D D D D
 The page table entry is marked D D D D D D D D

nvale 00000000

On-disk paging

e Let’s calm down and rewind...
e When the RAM is full and
get_free_page() is called

* The new page is expected to be
used... immediately

* So it should be allocated in RAM

* Another (victim) page should be
swapped out DIN

* Adisk slot is allocated Dl DD DDDD
* Page is written to disk oot
 The page table entry is marked D D D D D D D D

nvale 00000000

Handling swapped-out pages

id

X
=
>

Phys. Page

2
4
5

Let’s assume virtual page #6
is swapped out and stored in slot #1

2R
N

DI
il jnjnnmn

qudbogbog
qoooogod

Hodtoogt

R+~ Val
[EEY
oo
[EEY

o

0

[y
|

9

o

0]
1
2
3
4
5
6
7
8

Handling swapped-out pages

id

X
=
>

Phys. Page

Let’s assume virtual page #6
is swapped out and stored in slot #1

R+~ Val
[EEY
oo
[EEY

o

Where do we store this information?

2R
N

DI
il jnjnnmn

qudbogbog
qoooogod

Hodtoogt

o

0
1
2
3
4 1(1)1
)
6
7
8

Handling swapped-out pages

id

X
=
>

Phys. Page

2
4
5

Let’s assume virtual page #6
is swapped out and stored in slot #1

o
[y

R|—~|[~| Val
[EEY
o

o

Where do we store this information?

How do we distinguish /\
swapped-out pages
and v

lazily allocated Disk

Pages? OR000000
00000000
00000000

Hodtoogt

0]
1
2
3
4
5
6
7
8
9

=
(@)

[EEY
[EEY

=
N

=
w

=
IS

Handling swapped-out pages

id

X
=
>

Phys. Page

2
4
5

Let’s assume virtual page #6
is swapped out and stored in slot #1

R+~ Val
[EEY
oo
[EEY

o

We can use all fields but “valid”

to store the slot numbem

DI
il jnjnnmn

qudbogbog
qoooogod

Hodtoogt

0

[y
|

1

o

0]
1
2
3
4
5
6
7
8

Handling swapped-out pages

0]
1
2
3
4
5
6
7
8
9

e T
A W N R O

Phys. Page

id

X
=
>

2

o

4

o
[y

)

R|—~|[~| Val
[EEY

o

Let’s assume virtual page #6

is swapped out and stored in slot #1

Actually, there is not enough space

to store
<dev, block>

So anindexin a
“swap_info” array
is stored

2R
N

Disk

I IR
qudbogbog
Jodtoogt

Hodtoogt

Finding a good victim

* We should choose a page
* Which has a low probability to be
requested again soon

e Because we don’t have fun swapping
pages in & out

Finding a good victim

* We should choose a page
* Which has a low probability to be
requested again soon

e Because we don’t have fun swapping
pages in & out

* More precisely

* The optimal algorithm should select
the page whose next use will occur
farthest in the future

e Sounds good!
e Butin practice, we have no idea...

Page replacement algorithms

* Simple algorithms are often the
best ones

Page replacement algorithms

* Simple algorithms are often the
best ones

 How about using FIFO?

* The OS keeps the date of “arrival” of
pages in RAM

Page replacement algorithms

* Simple algorithms are often the
best ones

* How about using FIFO?

* The OS keeps the date of “arrival” of
pages in RAM

* Unfortunately, the FIFO replacement
strategy has a severe flaw

* FIFO does not belong to the class of
Stack-based algorithms

* “The set of pages in memory for N
frames is always a subset of the set of
pages that would be in memory with
N + 1 frames”

Belady’s anomaly with FIFO

* Belady, An anomaly in space-time characteristics of certain programs
running in a paging machine, Communications of the ACM, 1969.

* Let us consider the following series of page reclaims
«1,2,3,4,1,2,5/1,2,3,4,5

* It can be shown that this reference list causes more page faults with a
4-frame RAM than with a 3-frame one...

* The more RAM you have, the worser it behaves ®

Belady’s anomaly with FIFO

1 p. 3 4 1 2 5

Belady’s anomaly with FIFO

p. 3 4 1 2 5

Belady’s anomaly with FIFO

Belady’s anomaly with FIFO

Belady’s anomaly with FIFO

Belady’s anomaly with FIFO

Belady’s anomaly with FIFO

Belady’s anomaly with FIFO

O
—
L
<
=
=
=
a
-
O
-
©
IS
>
=
©
3,
af)

O
—
L
<
=
=
=
a
-
O
-
©
IS
>
=
©
3,
af)

O
—
L
<
=
=
=
a
-
O
-
©
IS
>
=
©
3,
af)

O
—
L
<
=
=
=
a
-
O
-
©
IS
>
=
©
3,
af)

O
—
L
<
=
=
=
a
-
O
-
©
IS
>
=
©
3,
af)

O
—
L
<
=
=
=
a
-
O
-
©
IS
>
=
©
3,
af)

Page replacement algorithms

e So we'd better stick to stack-
based algorithms such as
* LFU (Least Frequently Used)
* LRU (Least Recently Used)

* How to count the number of
accesses to each page?
* Do we really want to use NFU?

e How to store the last access time
of each page?

Page replacement algorithms

=
=
>

Phys. Page
2

* Only one hardware component
can do it: the MMU

O |O|O| Accessed

L[|~ |~ Valid

5

0

=
o

 When a virtual page is accessed,
the MMU sets the
corresponding accessed bit in
the page table

* |tis up to the kernel to periodically
test and reset this bit...

O N O Ul A WN L O

Page replacement algorithms

* Only one hardware component
can do it: the MMU

 When a virtual page is accessed,
the MMU sets the
corresponding accessed bit in
the page table

* |tis up to the kernel to periodically
test and reset this bit...

O N O Ul A WN L O

Phys. Page

=
=
>

2

5

L[|~ |~ Valid

B o o] Accessed

0

=

o

Page replacement algorithms

* Only one hardware component
can do it: the MMU

 When a virtual page is accessed,
the MMU sets the
corresponding accessed bit in
the page table

* |tis up to the kernel to periodically
test and reset this bit...

O N O Ul A WN L O

Phys. Page

=
=
>

2

5

L[|~ |~ Valid

B o o] Accessed

0

=

o

Approx.
Physical last access
addresses time

XyZ]

Page replacement algorithms

=
=
>

B o o] Accessed
[ERY
w

Phys. Page
2

=
(S}

 Periodically, the kernel can walk
through the page table and read
(& reset) the accessed bit for
each page
e Sampling

* Information = “was this page
accessed during the last period”?

Xy

=
SN

X

X

L[|~ |~ Valid

=
N

X

=
|

X

o
=
o

X

X

X

O 0o N O U1 A WN =L O

X

[EY
o

X

[
[y

X

X

=
N

[EY
w

Xy

XYZ

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

]
]
]
]
]
]
]
xyz]
]
]
]
]
]
]
]

H
'S

O KL N W b U1 O N 0 O

54

Approx.
Physical last access
addresses time

XyZ]

Page replacement algorithms

=
=
>

B o o] Accessed
[ERY
w

Phys. Page
2 .

=
(S}

 Periodically, the kernel can walk

through the page table and read
(& reset) the accessed bit for
each page

e Sampling

* Information = “was this page
accessed during the last period”?
* Aging

e Kernel can maintain an
approximation of last access time
per physical page

Xy

=
SN

X

Xy

=
N

|—\ = [~ Valid

XYZ

=
|

Xy

o
=
o

XYZ

]
]
]
]
]
]
xyz]
xyz]
]

]

]

]

]

]

]

Xy
Xy

X

O 0o N O U1 A WN =L O

[EY
o

[
[y

XVyZ

X

=
N

[EY
w

XYZ

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

H
'S

Xy
55

Approx.
Physical last access
addresses time

XyZ]

Page replacement algorithms

=
=
>

Phys. Page
2

Xy

 Periodically, the kernel can walk

through the page table and read
(& reset) the accessed bit for
each page

e Sampling

* Information = “was this page
accessed during the last period”?
* Aging

e Kernel can maintain an
approximation of last access time
per physical page

=
SN

X

=
w

Xy

L[|~ |~ Valid
O |O|O| Accessed
[y
n

=
N

XYZ

=
|

Xy

=
o

XYZ

Xy
Xy

X

O 0o N O U1 A WN =L O

[EY
o

[
[y

XYZ

X

=
N

[EY
w

XYZ

[

[]
[]
[]
[]
[]
[]
[xyz]
[xyz]
[]
[]
[]
[]
[]
[]
[]

O KL N W b U1 O N 0 O

0):4%

H
'S

56

Approx.
Physical last access
addresses time

XyZ]

Page replacement algorithms

=
=
>

Phys. Page
2

Xy

 Periodically, the kernel can walk

through the page table and read
(& reset) the accessed bit for
each page

e Sampling

* Information = “was this page
accessed during the last period”?
* Aging

e Kernel can maintain an
approximation of last access time
per physical page

=
SN

X

=
w

Xy

L[|~ |~ Valid
O |O|O| Accessed
[y
n

=
N

XYZ

=
|

Xy

=
o

XYZ

Xy
Xy

X

O 0o N O U1 A WN =L O

[EY
o

[
[y

XYZ

X

=
N

[EY
w

XYZ

[

[]
[]
[]
[]
[]
[]
[xyz]
[xyz]
[]
[]
[]
[]
[]
[]
[]

O KL N W b U1 O N 0 O

0):4%

H
'S

57

Approx.
Physical last access
addresses time

XyZ]

Page replacement algorithms

=
=
>

Phys. Page
2 .

Xy

X

 Periodically, the kernel can walk

through the page table and read
(& reset) the accessed bit for
each page

e Sampling

* Information = “was this page
accessed during the last period”?
* Aging

e Kernel can maintain an
approximation of last access time
per physical page

=
SN

=
w

O |O|O| Accessed
[y
n

Xy
Xy

=
N

|—\ = [~ Valid

=
|

=
o

O 0o N O U1 A WN =L O

[EY
o

[
[y

=
N

[EY
w

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

H
'S

Page replacement algorithms

* Now we have an “approximate
last access time” for each
physical pages

* Can be used to implement a
pseudo-LRU policy

e 11xis more "important” than 10x,
which is more important than 01x,
etc.

e E.g. Physical pages 2 and 4 (stamped
“00x“) are a good candidates for
being evicted from RAM

O 0o N O U1 A WN =L O

L el
5 W N RO

Phys. Page

=
=
>

2

L[|~ |~ Valid

O |O|O| Accessed

S T O o S o S
O RLr N W b U

O KL N W b U1 O N 0 O

Physical
addresses

Approx.
last access
time

XyZ]
Xy
X
Xy
Xy

1
Xy
Xy

Xy

X

X

0

[

[xyz]
[xyz]
[xyz]
[xyz]
[11x]
[xyz]
[xyz]
[xyz]
[xyz]
[01x]
[00x]
[xyz]
[00x]
[xyz]
[10x]

Page replacement algorithms

* Should our algorithm be local or
global?

e Local

e Search victim among pages from
current process

* Global

* Inspect all pages before deciding

S T O o S o S
O RLr N W b U

O KL N W b U1 O N 0 O

Physical
addresses

Approx.
last access
time

XyZ]
xyz]
Xyz]
xyz]
Xyz]
1x]
xyz]
Xyz]
Xyz]
Xyz]
]

]

]

]

]

]

X

X

0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Page replacement algorithms

Physical last access
addresses time

XyZ]

=
(S}

Xy

=
SN

* Should our algorithm be local or
global?

e Local

e Search victim among pages from
current process

* Would tend to keep the number of
resident pages constant

X

=
w

Xy
Xy
1

=
N

=
|

=
o

]
]
]
]
]
xyz]
xyz]
xyz]
]

]

]

]

]

]

]

Xy

X

X

0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

O KL N W b U1 O N 0 O

Page replacement algorithms

Physical last access
addresses time

XyZ]

=
(S}

Xy

=
SN

* Should our algorithm be local or
global?
* Global

* Inspect all pages before deciding

* Treat all processes equally?

e Or consider evicting pages from the
biggest?

X

=
w

Xy
Xy
1

=
N

=
|

=
o

]
]
]
]
]
xyz]
xyz]
xyz]
]

]

]

]

]

]

]

Xy

X

X

0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

O KL N W b U1 O N 0 O

Page replacement algorithms

* Should our algorithm be local or
global?
* Global

* Inspect all pages before deciding

* Treat all processes equally?

e Or consider evicting pages from the
biggest?

e Take from the rich and give to the
poor, uh?

Errol Flynn, The Adventures of Robin Hood, 1938.

Page replacement algorithms

 Not so obvious kids...

* Some process may have a lavish

NEIE

* What we call “Train deFvie
luxueux” in France £.39

* They have “just enough money”
to be happy

Page replacement algorithms

arrive pas ametre

 Not so obvious kids...

* Some process may have a lavish

NEIE

* What we call “Train deFvie
luxueux” in France V8]

* They have “just enough money”
to be happy

Page replacement algorithms

 Not so obvious kids...

* Some process may have a lavish

NEIE

* What we call “Train deFvie
luxueux” in France £.39

* They have “just enough money”
to be happy

Page replacement algorithms

 Not so obvious kids...

* Some process may have a lavish

NEIE
e What we call “Train de vie - Iib:re‘L'm député obligé de justifier ses frais n'est

luxueux” in France & L %

* They have “just enough money”
to be happy

Page replacement algorithms

 Not so obvious kids...

* Some process may have a lavish

NEIE
e What we call “Train de vie - Iib:re‘L'm député obligé de justifier ses frais n'est

i) =
luxueux” in France & L % . -
O —Justiﬁel’aide

. €nages modestes »
: ré récue po
* They have “just enough money” kRN RENISN vue pour

to be happy

Page replacement algorithms

srme qu'il
présidentielle :_athrm q
d'argent decote

Pour
. les dénuita
* Some process may have a lavish S ITT =" ;ﬁ:esp;tggoo
1 L] euros de fral-s" -

NENE
e What we call “Train de vie e Iib:re‘L'm député obligé de justifier ses frais n'est

i) =
luxueux” in France L3 -
—Justiﬁe l'aide

pour « ménages mod
- estes » recu
. re € po
* They have “just enough money” kRN RERNISN w1 pour
to be happy c'est fait offrir pour pres de 200 000 €de

costumes en cing ans

n'arrive pas 3 mettre

 Not so obvious kids...

Page replacement algorithms

ntielle :'_aﬁ'\rme

quiln’ arrive pasa mettre

* Not so obvious kids... préside

dargent decote

DL .

ang p .
Oo

S n'est

relance le débat de leur rémunération

V V O VV C C w 4 C V
plus libre"

luxueux” in France € % &
pour « mé . '
é - u ‘ai
nages modestes » rJ e laide

* They have “ju '
st enough money” TGS e
to be happy Y n logement ¢ue pour
s'est fait offrir pour pres de 200 000 € de

costumes en cing ans

The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* The OS can track the number of
page faults per second when
* 1resident page is granted
* 2 resident pages are granted
* 3 resident pages are granted
* Etc.

»
»

resident pages

The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* The OS can track the number of
page faults per second when
* 1resident page is granted
* 2 resident pages are granted
* 3 resident pages are granted
* Etc.

»
»

resident pages

The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* Beyond an “acceptable threshold”,
the page fault rate incurs a severe
slowdown

Acceptable
threshold

»
»

resident pages

The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* Beyond an “acceptable threshold”,
the page fault rate incurs a severe
slowdown

* This gives a lower bound on the Acceptable
number of pages which should stay threshold
in RAM for P,

»
»

resident pages

The notion of Working Set

page faults
rate 4

* Can we determine the number
of resident pages which will
make a process happy?

* Beyond an upper bound, the page
fault rate doesn’t decrease any
more

Acceptable
threshold

»
»

resident pages

The notion of Working Set

page faults
rate 4

* Keeping the number of resident
pages € [lower..upper] is ideal

* When searching for a victim

* We should consider processes which
live far beyond their lower bound

Acceptable
threshold

* In practice, modern OSes
approximate the WS to

* “pages which have been accessed ident pag;s
during a predefined period”

The notion of Working Set

* Keeping the number of resident
pages € [lower..upper] is ideal

* Note that it may be impossible

* Too many ready processes
=> Trashing

* Avoiding trashing
e Gang scheduling
* Process swapping

page faults
rate 4

Acceptable

threshold

»

»

resident pages

Page replacement algorithms

* Recap
* When RAM is full

e Avictim page must be evicted to satisfy a new
allocation

* The kernel is able to compute an
approximation of the last access time for
each physical page

* A page which is not accessed for a long period

(taking the virtual time of processes into
account) does not belong to a working set

* Good candidate
e [see WSClock algorithm]

S T O o S o S
O RLr N W b U

O KL N W b U1 O N 0 O

Physical
addresses

Approx.
last access

Page replacement algorithms

e Side notes

 How do we find the PTE (Page Table Entry) pointing on a physical page?
* Reverse mapping stored in a structure associated to each physical page

* How to swap-out shared pages?
* What if RAM mostly contains shared pages?

Bringing pages back to RAM

0]
1
2
3
4
5
6
7
8
9

e T
A W N PEFLP O

Phys. Page

id

X
=
>

2

o

4

[EEY
o
[EEY

)

R|—~|[~| Val

o

If process accesses virtual page #6:
1. Page fault raised
2. get_free_page() is called to allocate

a new physical frame
(note: this may trigger a swap-out)

. Read page from disk (slot #1)
and write to new frame /\
. Fix page table entry to v

reference new frame
Disk

I IR
qudbogbog
Jodtoogt

Hodtoogt

Bringing pages back to RAM

* In the worst case, two I/O operations are involved before the process
can resume its execution
* Too slow!

 Several optimizations can be used

e Swap-outs can be anticipated
* Some swap-outs can be avoided

Avoiding Swap-outs

* When a page has already been
swapped-out, and is now back to
memory

* The swap slot can be kept as is

* If the page is not modified until it
must be evicted again

* i.e., the page is “clean”
* Then no disk write is need
* |f the page was modified in the Disk

meantime 1 |NinnnEn

* i.e., the page is "dirty” U000
* Then it must be swapped-out again O000000T

Hodtoogt

Avoiding Swap-outs

Dirty

X
=
>

Phys. Page

2
4
5

(]

* Detecting if the page was
modified could be done by
removing the ‘w’ access mode

* Too expensive

o

= |—=|O | Accessed

o

0

* Page table entries feature a dirty
bit
* Set by MMU on each write access

* Cleared by OS when page is
installed in RAM

O 0o N L1 A WN - O

=
o

[EEY
[EEY

=
N

=
w

o|lo|lo|lr~|o|lo|lo|lo|o|lo|r|o|l—]|+~ || Valid

[EEY
'

Anticipating swap-outs

* A kernel DAEMON thread
(kswapd) keeps maintaining a
threshold of free pages in RAM

* When the reserve of free pages is
too small, the thread frees pages
“in the background”

* Most of the time, get_free page()
finds a free frame immediately!

Disk
HINININEEEN

|:|I|_||_||_||_||_||_I

qudbogbog
qoooogod

Hodtoogt

Additional resources
available on

http://gforgeron.gitlab.io/se/

