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Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
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Motivation

• When main memory (i.e. RAM) is full
• No more page can be allocated, so

• Process creation fails
• Process growth fails
• Lazy allocation fails
• Copy-on-Write fails
• What a mess! 😱

• Disks have a larger capacity
• We could use disk space as a RAM extension
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Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk
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Motivation

• When the RAM is full, we could 
satisfy upcoming allocations on 
disk

• Is it possible for a CPU to access 
disk storage transparently?

• Could we choose a smarter 
RAM/disk distribution?
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Technical considerations

• Is it possible for a CPU to access 
disk storage transparently?
• Devices can be assigned a range of 

physical addresses on the I/O bus 
• With 39-bit physical addresses, we can 

not only address RAM, but also any 
other addressable device

• A CPU read/write inside this range is 
redirected to the device
• Typically used to access device 

configuration registers

• This range can be mapped to a process 
address space
• Eg. Dolphin “Scalable Coherent 

Interface” [1992]
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Technical considerations

• Is it possible for a CPU to access 
disk storage transparently?
• Yes, in theory, this would be 

possible… however
• This would involve sending PCI 

requests for each individual access 
• Coalescing is possible, but only for 

small bursts
• Would lead to poor performance!

• Disks (either hard drives or SSD) 
perform block-based transfers
• E.g. 512B or 1K
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Technical considerations

• Is it possible for a CPU to access 
disk storage transparently?
• Even if it was possible

• Latency would kill us!
• Accessing a word on a disk is 

significantly slower than accessing a 
variable in RAM
• How much slower?
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Scale of Computer Latencies

• CPU cycle: 0.3 ns (Core i7 3 GHz)
• L1 cache: 1 ns 
• L2 cache: 5 ns
• L3 cache: 20 ns
• RAM: 50 ns
• NVMe SSD: 20 µs
• Sata SSD: 150 µs
• Hard Drive: 3 ms
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Quizz time
Hard drives specifications
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On-disk paging

• As a result, pages stored on disk 
will become…
 “temporarily unreachable”
• What does this mean?

• Swapped-out pages must be marked 
“invalid” in their owner’s page table
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On-disk paging

• As a result, pages stored on disk 
will become…
 “temporarily unreachable”
• What does this mean?

• Swapped-out pages must be marked 
“invalid” in their owner’s page table

• A page fault corresponding to a 
swapped-out page must bring the 
page back to memory (swap-in)
• What if the RAM is still full?
• What if it happens too frequently?

19

CPU RAM

Disk



On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it must be allocated in RAM
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On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it must be allocated in RAM

• Another (victim) page should be 
swapped out
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On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it must be allocated in RAM

• Another (victim) page should be 
swapped out
• A disk slot is allocated
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On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it should be allocated in RAM

• Another (victim) page should be 
swapped out
• A disk slot is allocated
• Page is written to disk
• The page table entry is marked 

invalid
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On-disk paging

• Let’s calm down and rewind…
• When the RAM is full and 
get_free_page() is called
• The new page is expected to be 

used… immediately
• So it should be allocated in RAM

• Another (victim) page should be 
swapped out
• A disk slot is allocated
• Page is written to disk
• The page table entry is marked 

invalid

24

CPU RAM

Disk



Handling swapped-out pages
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Handling swapped-out pages
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Finding a good victim

• We should choose a page
• Which has a low probability to be 

requested again soon
• Because we don’t have fun swapping 

pages in & out
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Finding a good victim

• We should choose a page
• Which has a low probability to be 

requested again soon
• Because we don’t have fun swapping 

pages in & out

• More precisely
• The optimal algorithm should select 

the page whose next use will occur 
farthest in the future

• Sounds good!
• But in practice, we have no idea…
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Page replacement algorithms

• Simple algorithms are often the 
best ones
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Page replacement algorithms

• Simple algorithms are often the 
best ones
• How about using FIFO?

• The OS keeps the date of ”arrival” of 
pages in RAM
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Page replacement algorithms

• Simple algorithms are often the 
best ones
• How about using FIFO?

• The OS keeps the date of ”arrival” of 
pages in RAM

• Unfortunately, the FIFO replacement 
strategy has a severe flaw
• FIFO does not belong to the class of 

Stack-based algorithms
• ”The set of pages in memory for N 

frames is always a subset of the set of 
pages that would be in memory with 
N + 1 frames”
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Belady’s anomaly with FIFO

• Belady, An anomaly in space-time characteristics of certain programs 
running in a paging machine, Communications of the ACM, 1969.

• Let us consider the following series of page reclaims
• 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• It can be shown that this reference list causes more page faults with a 
4-frame RAM than with a 3-frame one…
• The more RAM you have, the worser it behaves L
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Belady’s anomaly with FIFO

1 2 3 4 1 2 5 1 2 3 4 5
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Belady’s anomaly with FIFO
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Page replacement algorithms

• So we’d better stick to stack-
based algorithms such as
• LFU (Least Frequently Used)
• LRU (Least Recently Used)

• How to count the number of 
accesses to each page?
• Do we really want to use NFU?

• How to store the last access time 
of each page?
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Page replacement algorithms

• Only one hardware component 
can do it: the MMU

• When a virtual page is accessed, 
the MMU sets the 
corresponding accessed bit in 
the page table
• It is up to the kernel to periodically 

test and reset this bit…
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Page replacement algorithms

• Only one hardware component 
can do it: the MMU

• When a virtual page is accessed, 
the MMU sets the 
corresponding accessed bit in 
the page table
• It is up to the kernel to periodically 

test and reset this bit…
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Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?
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Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page
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Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page

56

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15Phys. Page Va

lid

2 10
4 11
5 12

03
0 14

05
06
07
08
09
010

10 111
012
013
014

R W X

0
0
0

0

0

Ac
ce

ss
ed

[xyz]

[xyz]

[1xy]

[xyz]

[xyz]

[0xy]

[xyz]

[xyz]

[xyz]

[xyz]

[0xy]

[0xy]

[xyz]

[xyz]

[1xy]

[xyz]

Approx.
last access 

time 



Page replacement algorithms

• Periodically, the kernel can walk 
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Page replacement algorithms

• Periodically, the kernel can walk 
through the page table and read 
(& reset) the accessed bit for 
each page
• Sampling

• Information = “was this page 
accessed during the last period”?

• Aging
• Kernel can maintain an 

approximation of last access time 
per physical page
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Quizz time
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Page replacement algorithms

• Now we have an “approximate 
last access time” for each 
physical pages
• Can be used to implement a 

pseudo-LRU policy
• 11x is more ”important” than 10x, 

which is more important than 01x, 
etc.

• E.g. Physical pages 2 and 4 (stamped 
“00x“) are a good candidates for 
being evicted from RAM
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Page replacement algorithms

• Should our algorithm be local or 
global?
• Local

• Search victim among pages from 
current process

• Global
• Inspect all pages before deciding

61

Physical
addresses 

0
1
2
3
4
5

11
12
13

6
7
8
9

10

14
15

Approx.
last access 

time 

[xyz]

[xyz]

[01x]

[xyz]

[xyz]

[00x]

[xyz]

[xyz]

[xyz]

[xyz]

[10x]

[00x]

[xyz]

[xyz]

[11x]

[xyz]



Page replacement algorithms

• Should our algorithm be local or 
global?
• Local

• Search victim among pages from 
current process

• Would tend to keep the number of 
resident pages constant
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Page replacement algorithms

• Should our algorithm be local or 
global?
• Global

• Inspect all pages before deciding
• Treat all processes equally?

• Or consider evicting pages from the 
biggest?
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Page replacement algorithms

• Should our algorithm be local or 
global?
• Global

• Inspect all pages before deciding
• Treat all processes equally?

• Or consider evicting pages from the 
biggest?

• Take from the rich and give to the 
poor, uh?
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Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy
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Page replacement algorithms

• Not so obvious kids…

• Some process may have a lavish 
lifestyle
• What we call “Train de vie 

luxueux” in France 🥖🍷🧑🎨

• They have “just enough money” 
to be happy
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The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• The OS can track the number of 

page faults per second when
• 1 resident page is granted
• 2 resident pages are granted
• 3 resident pages are granted
• Etc.

72
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The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• Beyond an “acceptable threshold”, 

the page fault rate incurs a severe 
slowdown
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The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• Beyond an “acceptable threshold”, 

the page fault rate incurs a severe 
slowdown
• This gives a lower bound on the 

number of pages which should stay 
in RAM for Pi
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The notion of Working Set

• Can we determine the number 
of resident pages which will 
make a process happy?
• Beyond an upper bound, the page 

fault rate doesn’t decrease any 
more
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The notion of Working Set

• Keeping the number of resident 
pages ∈ [lower..upper] is ideal

• When searching for a victim
• We should consider processes which 

live far beyond their lower bound

• In practice, modern OSes 
approximate the WS to
• “pages which have been accessed 

during a predefined period”
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The notion of Working Set

• Keeping the number of resident 
pages ∈ [lower..upper] is ideal

• Note that it may be impossible
• Too many ready processes
=> Trashing

• Avoiding trashing
• Gang scheduling
• Process swapping
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Page replacement algorithms

• Recap
• When RAM is full

• A victim page must be evicted to satisfy a new 
allocation

• The kernel is able to compute an 
approximation of the last access time for 
each physical page
• A page which is not accessed for a long period 

(taking the virtual time of processes into 
account) does not belong to a working set
• Good candidate
• [see WSClock algorithm]
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Page replacement algorithms

• Side notes
• How do we find the PTE (Page Table Entry) pointing on a physical page?

• Reverse mapping stored in a structure associated to each physical page

• How to swap-out shared pages?
• What if RAM mostly contains shared pages?
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Bringing pages back to RAM
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If process accesses virtual page #6:
1. Page fault raised
2. get_free_page() is called to allocate

a new physical frame
(note: this may trigger a swap-out)

3. Read page from disk (slot #1)
and write to new frame

4. Fix page table entry to
reference new frame



Bringing pages back to RAM

• In the worst case, two I/O operations are involved before the process 
can resume its execution
• Too slow!

• Several optimizations can be used
• Swap-outs can be anticipated
• Some swap-outs can be avoided
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Avoiding Swap-outs

• When a page has already been 
swapped-out, and is now back to 
memory
• The swap slot can be kept as is
• If the page is not modified until it 

must be evicted again
• i.e., the page is “clean”
• Then no disk write is need

• If the page was modified in the 
meantime
• i.e., the page is ”dirty”
• Then it must be swapped-out again
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Avoiding Swap-outs

• Detecting if the page was 
modified could be done by 
removing the ‘w’ access mode
• Too expensive

• Page table entries feature a dirty 
bit
• Set by MMU on each write access
• Cleared by OS when page is 

installed in RAM
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Anticipating swap-outs

• A kernel DAEMON thread 
(kswapd) keeps maintaining a 
threshold of free pages in RAM
• When the reserve of free pages is 

too small, the thread frees pages 
“in the background”

• Most of the time, get_free_page() 
finds a free frame immediately!
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Additional resources
available on

http://gforgeron.gitlab.io/se/
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